haikuwebkit/Source/WebCore/animation/AnimationEffect.cpp

555 lines
24 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 2017-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "AnimationEffect.h"
#include "CSSAnimation.h"
#include "FillMode.h"
#include "JSComputedEffectTiming.h"
#include "WebAnimation.h"
#include "WebAnimationUtilities.h"
namespace WebCore {
AnimationEffect::AnimationEffect()
: m_timingFunction(LinearTimingFunction::create())
{
}
AnimationEffect::~AnimationEffect()
{
}
EffectTiming AnimationEffect::getBindingsTiming() const
{
if (is<DeclarativeAnimation>(animation()))
downcast<DeclarativeAnimation>(*animation()).flushPendingStyleChanges();
return getTiming();
}
EffectTiming AnimationEffect::getTiming() const
{
EffectTiming timing;
timing.delay = secondsToWebAnimationsAPITime(m_delay);
timing.endDelay = secondsToWebAnimationsAPITime(m_endDelay);
timing.fill = m_fill;
timing.iterationStart = m_iterationStart;
timing.iterations = m_iterations;
if (m_iterationDuration == 0_s)
timing.duration = "auto";
else
timing.duration = secondsToWebAnimationsAPITime(m_iterationDuration);
timing.direction = m_direction;
timing.easing = m_timingFunction->cssText();
return timing;
}
BasicEffectTiming AnimationEffect::getBasicTiming(std::optional<Seconds> startTime) const
{
// The Web Animations spec introduces a number of animation effect time-related definitions that refer
// to each other a fair bit, so rather than implementing them as individual methods, it's more efficient
// to return them all as a single BasicEffectTiming.
auto localTime = [this, startTime]() -> std::optional<Seconds> {
// 4.5.4. Local time
// https://drafts.csswg.org/web-animations-1/#local-time-section
// The local time of an animation effect at a given moment is based on the first matching condition from the following:
// If the animation effect is associated with an animation, the local time is the current time of the animation.
// Otherwise, the local time is unresolved.
if (m_animation)
return m_animation->currentTime(startTime);
return std::nullopt;
}();
auto phase = [this, localTime]() -> AnimationEffectPhase {
// 3.5.5. Animation effect phases and states
// https://drafts.csswg.org/web-animations-1/#animation-effect-phases-and-states
bool animationIsBackwards = m_animation && m_animation->playbackRate() < 0;
auto beforeActiveBoundaryTime = std::max(std::min(m_delay, m_endTime), 0_s);
auto activeAfterBoundaryTime = std::max(std::min(m_delay + m_activeDuration, m_endTime), 0_s);
// (This should be the last statement, but it's more efficient to cache the local time and return right away if it's not resolved.)
// Furthermore, it is often convenient to refer to the case when an animation effect is in none of the above phases
// as being in the idle phase.
if (!localTime)
return AnimationEffectPhase::Idle;
// An animation effect is in the before phase if the animation effects local time is not unresolved and
// either of the following conditions are met:
// 1. the local time is less than the before-active boundary time, or
// 2. the animation direction is backwards and the local time is equal to the before-active boundary time.
if ((*localTime + timeEpsilon) < beforeActiveBoundaryTime || (animationIsBackwards && std::abs(localTime->microseconds() - beforeActiveBoundaryTime.microseconds()) < timeEpsilon.microseconds()))
return AnimationEffectPhase::Before;
// An animation effect is in the after phase if the animation effects local time is not unresolved and
// either of the following conditions are met:
// 1. the local time is greater than the active-after boundary time, or
// 2. the animation direction is forwards and the local time is equal to the active-after boundary time.
if ((*localTime - timeEpsilon) > activeAfterBoundaryTime || (!animationIsBackwards && std::abs(localTime->microseconds() - activeAfterBoundaryTime.microseconds()) < timeEpsilon.microseconds()))
return AnimationEffectPhase::After;
// An animation effect is in the active phase if the animation effects local time is not unresolved and it is not
// in either the before phase nor the after phase.
// (No need to check, we've already established that local time was resolved).
return AnimationEffectPhase::Active;
}();
auto activeTime = [this, localTime, phase]() -> std::optional<Seconds> {
// 3.8.3.1. Calculating the active time
// https://drafts.csswg.org/web-animations-1/#calculating-the-active-time
// The active time is based on the local time and start delay. However, it is only defined
// when the animation effect should produce an output and hence depends on its fill mode
// and phase as follows,
// If the animation effect is in the before phase, the result depends on the first matching
// condition from the following,
if (phase == AnimationEffectPhase::Before) {
// If the fill mode is backwards or both, return the result of evaluating
// max(local time - start delay, 0).
if (m_fill == FillMode::Backwards || m_fill == FillMode::Both)
return std::max(*localTime - m_delay, 0_s);
// Otherwise, return an unresolved time value.
return std::nullopt;
}
// If the animation effect is in the active phase, return the result of evaluating local time - start delay.
if (phase == AnimationEffectPhase::Active)
return *localTime - m_delay;
// If the animation effect is in the after phase, the result depends on the first matching
// condition from the following,
if (phase == AnimationEffectPhase::After) {
// If the fill mode is forwards or both, return the result of evaluating
// max(min(local time - start delay, active duration), 0).
if (m_fill == FillMode::Forwards || m_fill == FillMode::Both)
return std::max(std::min(*localTime - m_delay, m_activeDuration), 0_s);
// Otherwise, return an unresolved time value.
return std::nullopt;
}
// Otherwise (the local time is unresolved), return an unresolved time value.
return std::nullopt;
}();
return { localTime, activeTime, m_endTime, m_activeDuration, phase };
}
ComputedEffectTiming AnimationEffect::getBindingsComputedTiming() const
{
if (is<DeclarativeAnimation>(animation()))
downcast<DeclarativeAnimation>(*animation()).flushPendingStyleChanges();
return getComputedTiming();
}
ComputedEffectTiming AnimationEffect::getComputedTiming(std::optional<Seconds> startTime) const
{
// The Web Animations spec introduces a number of animation effect time-related definitions that refer
// to each other a fair bit, so rather than implementing them as individual methods, it's more efficient
// to return them all as a single ComputedEffectTiming.
auto basicEffectTiming = getBasicTiming(startTime);
auto activeTime = basicEffectTiming.activeTime;
auto phase = basicEffectTiming.phase;
auto overallProgress = [this, phase, activeTime]() -> std::optional<double> {
// 3.8.3.2. Calculating the overall progress
// https://drafts.csswg.org/web-animations-1/#calculating-the-overall-progress
// The overall progress describes the number of iterations that have completed (including partial iterations) and is defined as follows:
// 1. If the active time is unresolved, return unresolved.
if (!activeTime)
return std::nullopt;
// 2. Calculate an initial value for overall progress based on the first matching condition from below,
double overallProgress;
if (!m_iterationDuration) {
// If the iteration duration is zero, if the animation effect is in the before phase, let overall progress be zero,
// otherwise, let it be equal to the iteration count.
overallProgress = phase == AnimationEffectPhase::Before ? 0 : m_iterations;
} else {
// Otherwise, let overall progress be the result of calculating active time / iteration duration.
overallProgress = secondsToWebAnimationsAPITime(*activeTime) / secondsToWebAnimationsAPITime(m_iterationDuration);
}
// 3. Return the result of calculating overall progress + iteration start.
overallProgress += m_iterationStart;
return std::abs(overallProgress);
}();
auto simpleIterationProgress = [this, overallProgress, phase, activeTime]() -> std::optional<double> {
// 3.8.3.3. Calculating the simple iteration progress
// https://drafts.csswg.org/web-animations-1/#calculating-the-simple-iteration-progress
// The simple iteration progress is a fraction of the progress through the current iteration that
// ignores transformations to the time introduced by the playback direction or timing functions
// applied to the effect, and is calculated as follows:
// 1. If the overall progress is unresolved, return unresolved.
if (!overallProgress)
return std::nullopt;
// 2. If overall progress is infinity, let the simple iteration progress be iteration start % 1.0,
// otherwise, let the simple iteration progress be overall progress % 1.0.
double simpleIterationProgress = std::isinf(*overallProgress) ? fmod(m_iterationStart, 1) : fmod(*overallProgress, 1);
// 3. If all of the following conditions are true,
//
// the simple iteration progress calculated above is zero, and
// the animation effect is in the active phase or the after phase, and
// the active time is equal to the active duration, and
// the iteration count is not equal to zero.
// let the simple iteration progress be 1.0.
if (!simpleIterationProgress && (phase == AnimationEffectPhase::Active || phase == AnimationEffectPhase::After) && std::abs(activeTime->microseconds() - m_activeDuration.microseconds()) < timeEpsilon.microseconds() && m_iterations)
return 1;
return simpleIterationProgress;
}();
auto currentIteration = [this, activeTime, phase, simpleIterationProgress, overallProgress]() -> std::optional<double> {
// 3.8.4. Calculating the current iteration
// https://drafts.csswg.org/web-animations-1/#calculating-the-current-iteration
// The current iteration can be calculated using the following steps:
// 1. If the active time is unresolved, return unresolved.
if (!activeTime)
return std::nullopt;
// 2. If the animation effect is in the after phase and the iteration count is infinity, return infinity.
if (phase == AnimationEffectPhase::After && std::isinf(m_iterations))
return std::numeric_limits<double>::infinity();
// 3. If the simple iteration progress is 1.0, return floor(overall progress) - 1.
if (*simpleIterationProgress == 1)
return floor(*overallProgress) - 1;
// 4. Otherwise, return floor(overall progress).
return floor(*overallProgress);
}();
auto currentDirection = [this, currentIteration]() -> AnimationEffect::ComputedDirection {
// 3.9.1. Calculating the directed progress
// https://drafts.csswg.org/web-animations-1/#calculating-the-directed-progress
// If playback direction is normal, let the current direction be forwards.
if (m_direction == PlaybackDirection::Normal)
return AnimationEffect::ComputedDirection::Forwards;
// If playback direction is reverse, let the current direction be reverse.
if (m_direction == PlaybackDirection::Reverse)
return AnimationEffect::ComputedDirection::Reverse;
if (!currentIteration)
return AnimationEffect::ComputedDirection::Forwards;
// Otherwise, let d be the current iteration.
auto d = *currentIteration;
// If playback direction is alternate-reverse increment d by 1.
if (m_direction == PlaybackDirection::AlternateReverse)
d++;
// If d % 2 == 0, let the current direction be forwards, otherwise let the current direction be reverse.
// If d is infinity, let the current direction be forwards.
if (std::isinf(d) || !fmod(d, 2))
return AnimationEffect::ComputedDirection::Forwards;
return AnimationEffect::ComputedDirection::Reverse;
}();
auto directedProgress = [simpleIterationProgress, currentDirection]() -> std::optional<double> {
// 3.9.1. Calculating the directed progress
// https://drafts.csswg.org/web-animations-1/#calculating-the-directed-progress
// The directed progress is calculated from the simple iteration progress using the following steps:
// 1. If the simple iteration progress is unresolved, return unresolved.
if (!simpleIterationProgress)
return std::nullopt;
// 2. Calculate the current direction (we implement this as a separate method).
// 3. If the current direction is forwards then return the simple iteration progress.
if (currentDirection == AnimationEffect::ComputedDirection::Forwards)
return *simpleIterationProgress;
// Otherwise, return 1.0 - simple iteration progress.
return 1 - *simpleIterationProgress;
}();
auto transformedProgress = [this, directedProgress, currentDirection, phase]() -> std::optional<double> {
// 3.10.1. Calculating the transformed progress
// https://drafts.csswg.org/web-animations-1/#calculating-the-transformed-progress
// The transformed progress is calculated from the directed progress using the following steps:
//
// 1. If the directed progress is unresolved, return unresolved.
if (!directedProgress)
return std::nullopt;
if (auto iterationDuration = m_iterationDuration.seconds()) {
bool before = false;
// 2. Calculate the value of the before flag as follows:
if (is<StepsTimingFunction>(m_timingFunction)) {
// 1. Determine the current direction using the procedure defined in §3.9.1 Calculating the directed progress.
// 2. If the current direction is forwards, let going forwards be true, otherwise it is false.
bool goingForwards = currentDirection == AnimationEffect::ComputedDirection::Forwards;
// 3. The before flag is set if the animation effect is in the before phase and going forwards is true;
// or if the animation effect is in the after phase and going forwards is false.
before = (phase == AnimationEffectPhase::Before && goingForwards) || (phase == AnimationEffectPhase::After && !goingForwards);
}
// 3. Return the result of evaluating the animation effects timing function passing directed progress as the
// input progress value and before flag as the before flag.
return m_timingFunction->transformTime(*directedProgress, iterationDuration, before);
}
return *directedProgress;
}();
ComputedEffectTiming computedTiming;
computedTiming.delay = secondsToWebAnimationsAPITime(m_delay);
computedTiming.endDelay = secondsToWebAnimationsAPITime(m_endDelay);
computedTiming.fill = m_fill == FillMode::Auto ? FillMode::None : m_fill;
computedTiming.iterationStart = m_iterationStart;
computedTiming.iterations = m_iterations;
computedTiming.duration = secondsToWebAnimationsAPITime(m_iterationDuration);
computedTiming.direction = m_direction;
computedTiming.easing = m_timingFunction->cssText();
computedTiming.endTime = secondsToWebAnimationsAPITime(m_endTime);
computedTiming.activeDuration = secondsToWebAnimationsAPITime(m_activeDuration);
if (basicEffectTiming.localTime)
computedTiming.localTime = secondsToWebAnimationsAPITime(*basicEffectTiming.localTime);
computedTiming.simpleIterationProgress = simpleIterationProgress;
computedTiming.progress = transformedProgress;
computedTiming.currentIteration = currentIteration;
computedTiming.phase = phase;
return computedTiming;
}
ExceptionOr<void> AnimationEffect::bindingsUpdateTiming(std::optional<OptionalEffectTiming> timing)
{
auto retVal = updateTiming(timing);
if (!retVal.hasException() && timing && is<CSSAnimation>(animation()))
downcast<CSSAnimation>(*animation()).effectTimingWasUpdatedUsingBindings(*timing);
return retVal;
}
ExceptionOr<void> AnimationEffect::updateTiming(std::optional<OptionalEffectTiming> timing)
{
// 6.5.4. Updating the timing of an AnimationEffect
// https://drafts.csswg.org/web-animations/#updating-animationeffect-timing
// To update the timing properties of an animation effect, effect, from an EffectTiming or OptionalEffectTiming object, input, perform the following steps:
if (!timing)
return { };
// 1. If the iterationStart member of input is present and less than zero, throw a TypeError and abort this procedure.
if (timing->iterationStart) {
if (timing->iterationStart.value() < 0)
return Exception { TypeError };
}
// 2. If the iterations member of input is present, and less than zero or is the value NaN, throw a TypeError and abort this procedure.
if (timing->iterations) {
if (timing->iterations.value() < 0 || std::isnan(timing->iterations.value()))
return Exception { TypeError };
}
// 3. If the duration member of input is present, and less than zero or is the value NaN, throw a TypeError and abort this procedure.
// FIXME: should it not throw an exception on a string other than "auto"?
if (timing->duration) {
if (WTF::holds_alternative<double>(timing->duration.value())) {
auto durationAsDouble = WTF::get<double>(timing->duration.value());
if (durationAsDouble < 0 || std::isnan(durationAsDouble))
return Exception { TypeError };
} else {
if (WTF::get<String>(timing->duration.value()) != "auto")
return Exception { TypeError };
}
}
// 4. If the easing member of input is present but cannot be parsed using the <timing-function> production [CSS-EASING-1], throw a TypeError and abort this procedure.
if (!timing->easing.isNull()) {
auto timingFunctionResult = TimingFunction::createFromCSSText(timing->easing);
if (timingFunctionResult.hasException())
return timingFunctionResult.releaseException();
m_timingFunction = timingFunctionResult.returnValue();
}
// 5. Assign each member present in input to the corresponding timing property of effect as follows:
//
// delay → start delay
// endDelay → end delay
// fill → fill mode
// iterationStart → iteration start
// iterations → iteration count
// duration → iteration duration
// direction → playback direction
// easing → timing function
if (timing->delay)
m_delay = Seconds::fromMilliseconds(timing->delay.value());
if (timing->endDelay)
m_endDelay = Seconds::fromMilliseconds(timing->endDelay.value());
if (timing->fill)
m_fill = timing->fill.value();
if (timing->iterationStart)
m_iterationStart = timing->iterationStart.value();
if (timing->iterations)
m_iterations = timing->iterations.value();
if (timing->duration)
m_iterationDuration = WTF::holds_alternative<double>(timing->duration.value()) ? Seconds::fromMilliseconds(WTF::get<double>(timing->duration.value())) : 0_s;
if (timing->direction)
m_direction = timing->direction.value();
updateStaticTimingProperties();
if (m_animation)
m_animation->effectTimingDidChange();
return { };
}
void AnimationEffect::updateStaticTimingProperties()
{
// 3.8.2. Calculating the active duration
// https://drafts.csswg.org/web-animations-1/#calculating-the-active-duration
// The active duration is calculated as follows:
// active duration = iteration duration × iteration count
// If either the iteration duration or iteration count are zero, the active duration is zero.
if (!m_iterationDuration || !m_iterations)
m_activeDuration = 0_s;
else
m_activeDuration = m_iterationDuration * m_iterations;
// 3.5.3 The active interval
// https://drafts.csswg.org/web-animations-1/#end-time
// The end time of an animation effect is the result of evaluating max(start delay + active duration + end delay, 0).
m_endTime = m_delay + m_activeDuration + m_endDelay;
if (m_endTime < 0_s)
m_endTime = 0_s;
}
ExceptionOr<void> AnimationEffect::setIterationStart(double iterationStart)
{
// https://drafts.csswg.org/web-animations-1/#dom-animationeffecttiming-iterationstart
// If an attempt is made to set this attribute to a value less than zero, a TypeError must
// be thrown and the value of the iterationStart attribute left unchanged.
if (iterationStart < 0)
return Exception { TypeError };
if (m_iterationStart == iterationStart)
return { };
m_iterationStart = iterationStart;
return { };
}
ExceptionOr<void> AnimationEffect::setIterations(double iterations)
{
// https://drafts.csswg.org/web-animations-1/#dom-animationeffecttiming-iterations
// If an attempt is made to set this attribute to a value less than zero or a NaN value, a
// TypeError must be thrown and the value of the iterations attribute left unchanged.
if (iterations < 0 || std::isnan(iterations))
return Exception { TypeError };
if (m_iterations == iterations)
return { };
m_iterations = iterations;
return { };
}
void AnimationEffect::setDelay(const Seconds& delay)
{
if (m_delay == delay)
return;
m_delay = delay;
}
void AnimationEffect::setEndDelay(const Seconds& endDelay)
{
if (m_endDelay == endDelay)
return;
m_endDelay = endDelay;
}
void AnimationEffect::setFill(FillMode fill)
{
if (m_fill == fill)
return;
m_fill = fill;
}
void AnimationEffect::setIterationDuration(const Seconds& duration)
{
if (m_iterationDuration == duration)
return;
m_iterationDuration = duration;
}
void AnimationEffect::setDirection(PlaybackDirection direction)
{
if (m_direction == direction)
return;
m_direction = direction;
}
void AnimationEffect::setTimingFunction(const RefPtr<TimingFunction>& timingFunction)
{
m_timingFunction = timingFunction;
}
std::optional<double> AnimationEffect::progressUntilNextStep(double iterationProgress) const
{
if (!is<StepsTimingFunction>(m_timingFunction))
return std::nullopt;
auto numberOfSteps = downcast<StepsTimingFunction>(*m_timingFunction).numberOfSteps();
auto nextStepProgress = ceil(iterationProgress * numberOfSteps) / numberOfSteps;
return nextStepProgress - iterationProgress;
}
} // namespace WebCore