minetest/src/voxel.cpp

321 lines
8.1 KiB
C++

/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "voxel.h"
#include "map.h"
#include "gettime.h"
#include "nodedef.h"
#include "util/directiontables.h"
#include "util/timetaker.h"
#include <cstring> // memcpy, memset
/*
Debug stuff
*/
u64 addarea_time = 0;
u64 emerge_time = 0;
u64 emerge_load_time = 0;
u64 clearflag_time = 0;
VoxelManipulator::~VoxelManipulator()
{
clear();
}
void VoxelManipulator::clear()
{
// Reset area to volume=0
m_area = VoxelArea();
delete[] m_data;
m_data = nullptr;
delete[] m_flags;
m_flags = nullptr;
}
void VoxelManipulator::print(std::ostream &o, const NodeDefManager *ndef,
VoxelPrintMode mode)
{
const v3s16 &em = m_area.getExtent();
v3s16 of = m_area.MinEdge;
o<<"size: "<<em.X<<"x"<<em.Y<<"x"<<em.Z
<<" offset: ("<<of.X<<","<<of.Y<<","<<of.Z<<")"<<std::endl;
for(s32 y=m_area.MaxEdge.Y; y>=m_area.MinEdge.Y; y--)
{
if(em.X >= 3 && em.Y >= 3)
{
if (y==m_area.MinEdge.Y+2) o<<"^ ";
else if(y==m_area.MinEdge.Y+1) o<<"| ";
else if(y==m_area.MinEdge.Y+0) o<<"y x-> ";
else o<<" ";
}
for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++)
{
for(s32 x=m_area.MinEdge.X; x<=m_area.MaxEdge.X; x++)
{
u8 f = m_flags[m_area.index(x,y,z)];
char c;
if(f & VOXELFLAG_NO_DATA)
c = 'N';
else
{
c = 'X';
MapNode n = m_data[m_area.index(x,y,z)];
content_t m = n.getContent();
u8 pr = n.param2;
if(mode == VOXELPRINT_MATERIAL)
{
if(m <= 9)
c = m + '0';
}
else if(mode == VOXELPRINT_WATERPRESSURE)
{
if(ndef->get(m).isLiquid())
{
c = 'w';
if(pr <= 9)
c = pr + '0';
}
else if(m == CONTENT_AIR)
{
c = ' ';
}
else
{
c = '#';
}
}
else if(mode == VOXELPRINT_LIGHT_DAY)
{
if(ndef->get(m).light_source != 0)
c = 'S';
else if(!ndef->get(m).light_propagates)
c = 'X';
else
{
u8 light = n.getLight(LIGHTBANK_DAY, ndef);
if(light < 10)
c = '0' + light;
else
c = 'a' + (light-10);
}
}
}
o<<c;
}
o<<' ';
}
o<<std::endl;
}
}
void VoxelManipulator::addArea(const VoxelArea &area)
{
// Cancel if requested area has zero volume
if (area.hasEmptyExtent())
return;
// Cancel if m_area already contains the requested area
if(m_area.contains(area))
return;
TimeTaker timer("addArea", &addarea_time);
// Calculate new area
VoxelArea new_area;
// New area is the requested area if m_area has zero volume
if(m_area.hasEmptyExtent())
{
new_area = area;
}
// Else add requested area to m_area
else
{
new_area = m_area;
new_area.addArea(area);
}
s32 new_size = new_area.getVolume();
/*dstream<<"adding area ";
area.print(dstream);
dstream<<", old area ";
m_area.print(dstream);
dstream<<", new area ";
new_area.print(dstream);
dstream<<", new_size="<<new_size;
dstream<<std::endl;*/
// Allocate new data and clear flags
MapNode *new_data = new MapNode[new_size];
assert(new_data);
u8 *new_flags = new u8[new_size];
assert(new_flags);
memset(new_flags, VOXELFLAG_NO_DATA, new_size);
// Copy old data
s32 old_x_width = m_area.MaxEdge.X - m_area.MinEdge.X + 1;
for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++)
for(s32 y=m_area.MinEdge.Y; y<=m_area.MaxEdge.Y; y++)
{
unsigned int old_index = m_area.index(m_area.MinEdge.X,y,z);
unsigned int new_index = new_area.index(m_area.MinEdge.X,y,z);
memcpy(&new_data[new_index], &m_data[old_index],
old_x_width * sizeof(MapNode));
memcpy(&new_flags[new_index], &m_flags[old_index],
old_x_width * sizeof(u8));
}
// Replace area, data and flags
m_area = new_area;
MapNode *old_data = m_data;
u8 *old_flags = m_flags;
/*dstream<<"old_data="<<(int)old_data<<", new_data="<<(int)new_data
<<", old_flags="<<(int)m_flags<<", new_flags="<<(int)new_flags<<std::endl;*/
m_data = new_data;
m_flags = new_flags;
delete[] old_data;
delete[] old_flags;
//dstream<<"addArea done"<<std::endl;
}
void VoxelManipulator::copyFrom(MapNode *src, const VoxelArea& src_area,
v3s16 from_pos, v3s16 to_pos, const v3s16 &size)
{
/* The reason for this optimised code is that we're a member function
* and the data type/layout of m_data is know to us: it's stored as
* [z*h*w + y*h + x]. Therefore we can take the calls to m_area index
* (which performs the preceding mapping/indexing of m_data) out of the
* inner loop and calculate the next index as we're iterating to gain
* performance.
*
* src_step and dest_step is the amount required to be added to our index
* every time y increments. Because the destination area may be larger
* than the source area we need one additional variable (otherwise we could
* just continue adding dest_step as is done for the source data): dest_mod.
* dest_mod is the difference in size between a "row" in the source data
* and a "row" in the destination data (I am using the term row loosely
* and for illustrative purposes). E.g.
*
* src <-------------------->|'''''' dest mod ''''''''
* dest <--------------------------------------------->
*
* dest_mod (it's essentially a modulus) is added to the destination index
* after every full iteration of the y span.
*
* This method falls under the category "linear array and incrementing
* index".
*/
s32 src_step = src_area.getExtent().X;
s32 dest_step = m_area.getExtent().X;
s32 dest_mod = m_area.index(to_pos.X, to_pos.Y, to_pos.Z + 1)
- m_area.index(to_pos.X, to_pos.Y, to_pos.Z)
- dest_step * size.Y;
s32 i_src = src_area.index(from_pos.X, from_pos.Y, from_pos.Z);
s32 i_local = m_area.index(to_pos.X, to_pos.Y, to_pos.Z);
for (s16 z = 0; z < size.Z; z++) {
for (s16 y = 0; y < size.Y; y++) {
memcpy(&m_data[i_local], &src[i_src], size.X * sizeof(*m_data));
memset(&m_flags[i_local], 0, size.X);
i_src += src_step;
i_local += dest_step;
}
i_local += dest_mod;
}
}
void VoxelManipulator::copyTo(MapNode *dst, const VoxelArea& dst_area,
v3s16 dst_pos, v3s16 from_pos, const v3s16 &size)
{
for(s16 z=0; z<size.Z; z++)
for(s16 y=0; y<size.Y; y++)
{
s32 i_dst = dst_area.index(dst_pos.X, dst_pos.Y+y, dst_pos.Z+z);
s32 i_local = m_area.index(from_pos.X, from_pos.Y+y, from_pos.Z+z);
for (s16 x = 0; x < size.X; x++) {
if (m_data[i_local].getContent() != CONTENT_IGNORE)
dst[i_dst] = m_data[i_local];
i_dst++;
i_local++;
}
}
}
/*
Algorithms
-----------------------------------------------------
*/
void VoxelManipulator::clearFlag(u8 flags)
{
// 0-1ms on moderate area
TimeTaker timer("clearFlag", &clearflag_time);
//v3s16 s = m_area.getExtent();
/*dstream<<"clearFlag clearing area of size "
<<""<<s.X<<"x"<<s.Y<<"x"<<s.Z<<""
<<std::endl;*/
//s32 count = 0;
/*for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++)
for(s32 y=m_area.MinEdge.Y; y<=m_area.MaxEdge.Y; y++)
for(s32 x=m_area.MinEdge.X; x<=m_area.MaxEdge.X; x++)
{
u8 f = m_flags[m_area.index(x,y,z)];
m_flags[m_area.index(x,y,z)] &= ~flags;
if(m_flags[m_area.index(x,y,z)] != f)
count++;
}*/
s32 volume = m_area.getVolume();
for(s32 i=0; i<volume; i++)
{
m_flags[i] &= ~flags;
}
/*s32 volume = m_area.getVolume();
for(s32 i=0; i<volume; i++)
{
u8 f = m_flags[i];
m_flags[i] &= ~flags;
if(m_flags[i] != f)
count++;
}
dstream<<"clearFlag changed "<<count<<" flags out of "
<<volume<<" nodes"<<std::endl;*/
}
const MapNode VoxelManipulator::ContentIgnoreNode = MapNode(CONTENT_IGNORE);
//END