/* Minetest Copyright (C) 2010-2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #pragma once #include "basic_macros.h" #include "constants.h" #include "irrlichttypes.h" #include "irr_v2d.h" #include "irr_v3d.h" #include "irr_aabb3d.h" #include "SColor.h" #include #define rangelim(d, min, max) ((d) < (min) ? (min) : ((d) > (max) ? (max) : (d))) #define myfloor(x) ((x) < 0.0 ? (int)(x) - 1 : (int)(x)) // The naive swap performs better than the xor version #define SWAP(t, x, y) do { \ t temp = x; \ x = y; \ y = temp; \ } while (0) // Maximum radius of a block. The magic number is // sqrt(3.0) / 2.0 in literal form. static constexpr const f32 BLOCK_MAX_RADIUS = 0.866025403784f * MAP_BLOCKSIZE * BS; inline s16 getContainerPos(s16 p, s16 d) { return (p >= 0 ? p : p - d + 1) / d; } inline v2s16 getContainerPos(v2s16 p, s16 d) { return v2s16( getContainerPos(p.X, d), getContainerPos(p.Y, d) ); } inline v3s16 getContainerPos(v3s16 p, s16 d) { return v3s16( getContainerPos(p.X, d), getContainerPos(p.Y, d), getContainerPos(p.Z, d) ); } inline v2s16 getContainerPos(v2s16 p, v2s16 d) { return v2s16( getContainerPos(p.X, d.X), getContainerPos(p.Y, d.Y) ); } inline v3s16 getContainerPos(v3s16 p, v3s16 d) { return v3s16( getContainerPos(p.X, d.X), getContainerPos(p.Y, d.Y), getContainerPos(p.Z, d.Z) ); } inline void getContainerPosWithOffset(s16 p, s16 d, s16 &container, s16 &offset) { container = (p >= 0 ? p : p - d + 1) / d; offset = p & (d - 1); } inline void getContainerPosWithOffset(const v2s16 &p, s16 d, v2s16 &container, v2s16 &offset) { getContainerPosWithOffset(p.X, d, container.X, offset.X); getContainerPosWithOffset(p.Y, d, container.Y, offset.Y); } inline void getContainerPosWithOffset(const v3s16 &p, s16 d, v3s16 &container, v3s16 &offset) { getContainerPosWithOffset(p.X, d, container.X, offset.X); getContainerPosWithOffset(p.Y, d, container.Y, offset.Y); getContainerPosWithOffset(p.Z, d, container.Z, offset.Z); } inline bool isInArea(v3s16 p, s16 d) { return ( p.X >= 0 && p.X < d && p.Y >= 0 && p.Y < d && p.Z >= 0 && p.Z < d ); } inline bool isInArea(v2s16 p, s16 d) { return ( p.X >= 0 && p.X < d && p.Y >= 0 && p.Y < d ); } inline bool isInArea(v3s16 p, v3s16 d) { return ( p.X >= 0 && p.X < d.X && p.Y >= 0 && p.Y < d.Y && p.Z >= 0 && p.Z < d.Z ); } inline void sortBoxVerticies(v3s16 &p1, v3s16 &p2) { if (p1.X > p2.X) SWAP(s16, p1.X, p2.X); if (p1.Y > p2.Y) SWAP(s16, p1.Y, p2.Y); if (p1.Z > p2.Z) SWAP(s16, p1.Z, p2.Z); } inline v3s16 componentwise_min(const v3s16 &a, const v3s16 &b) { return v3s16(MYMIN(a.X, b.X), MYMIN(a.Y, b.Y), MYMIN(a.Z, b.Z)); } inline v3s16 componentwise_max(const v3s16 &a, const v3s16 &b) { return v3s16(MYMAX(a.X, b.X), MYMAX(a.Y, b.Y), MYMAX(a.Z, b.Z)); } /** Returns \p f wrapped to the range [-360, 360] * * See test.cpp for example cases. * * \note This is also used in cases where degrees wrapped to the range [0, 360] * is innapropriate (e.g. pitch needs negative values) * * \internal functionally equivalent -- although precision may vary slightly -- * to fmodf((f), 360.0f) however empirical tests indicate that this approach is * faster. */ inline float modulo360f(float f) { int sign; int whole; float fraction; if (f < 0) { f = -f; sign = -1; } else { sign = 1; } whole = f; fraction = f - whole; whole %= 360; return sign * (whole + fraction); } /** Returns \p f wrapped to the range [0, 360] */ inline float wrapDegrees_0_360(float f) { float value = modulo360f(f); return value < 0 ? value + 360 : value; } /** Returns \p v3f wrapped to the range [0, 360] */ inline v3f wrapDegrees_0_360_v3f(v3f v) { v3f value_v3f; value_v3f.X = modulo360f(v.X); value_v3f.Y = modulo360f(v.Y); value_v3f.Z = modulo360f(v.Z); // Now that values are wrapped, use to get values for certain ranges value_v3f.X = value_v3f.X < 0 ? value_v3f.X + 360 : value_v3f.X; value_v3f.Y = value_v3f.Y < 0 ? value_v3f.Y + 360 : value_v3f.Y; value_v3f.Z = value_v3f.Z < 0 ? value_v3f.Z + 360 : value_v3f.Z; return value_v3f; } /** Returns \p f wrapped to the range [-180, 180] */ inline float wrapDegrees_180(float f) { float value = modulo360f(f + 180); if (value < 0) value += 360; return value - 180; } /* Pseudo-random (VC++ rand() sucks) */ #define MYRAND_RANGE 0xffffffff u32 myrand(); void mysrand(unsigned int seed); void myrand_bytes(void *out, size_t len); int myrand_range(int min, int max); /* Miscellaneous functions */ inline u32 get_bits(u32 x, u32 pos, u32 len) { u32 mask = (1 << len) - 1; return (x >> pos) & mask; } inline void set_bits(u32 *x, u32 pos, u32 len, u32 val) { u32 mask = (1 << len) - 1; *x &= ~(mask << pos); *x |= (val & mask) << pos; } inline u32 calc_parity(u32 v) { v ^= v >> 16; v ^= v >> 8; v ^= v >> 4; v &= 0xf; return (0x6996 >> v) & 1; } u64 murmur_hash_64_ua(const void *key, int len, unsigned int seed); bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir, f32 camera_fov, f32 range, f32 *distance_ptr=NULL); s16 adjustDist(s16 dist, float zoom_fov); /* Returns nearest 32-bit integer for given floating point number. and in VC++ don't provide round(). */ inline s32 myround(f32 f) { return (s32)(f < 0.f ? (f - 0.5f) : (f + 0.5f)); } inline constexpr f32 sqr(f32 f) { return f * f; } /* Returns integer position of node in given floating point position */ inline v3s16 floatToInt(v3f p, f32 d) { return v3s16( (p.X + (p.X > 0 ? d / 2 : -d / 2)) / d, (p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d, (p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d); } /* Returns integer position of node in given double precision position */ inline v3s16 doubleToInt(v3d p, double d) { return v3s16( (p.X + (p.X > 0 ? d / 2 : -d / 2)) / d, (p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d, (p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d); } /* Returns floating point position of node in given integer position */ inline v3f intToFloat(v3s16 p, f32 d) { return v3f( (f32)p.X * d, (f32)p.Y * d, (f32)p.Z * d ); } // Random helper. Usually d=BS inline aabb3f getNodeBox(v3s16 p, float d) { return aabb3f( (float)p.X * d - 0.5f * d, (float)p.Y * d - 0.5f * d, (float)p.Z * d - 0.5f * d, (float)p.X * d + 0.5f * d, (float)p.Y * d + 0.5f * d, (float)p.Z * d + 0.5f * d ); } class IntervalLimiter { public: IntervalLimiter() = default; /* dtime: time from last call to this method wanted_interval: interval wanted return value: true: action should be skipped false: action should be done */ bool step(float dtime, float wanted_interval) { m_accumulator += dtime; if (m_accumulator < wanted_interval) return false; m_accumulator -= wanted_interval; return true; } private: float m_accumulator = 0.0f; }; /* Splits a list into "pages". For example, the list [1,2,3,4,5] split into two pages would be [1,2,3],[4,5]. This function computes the minimum and maximum indices of a single page. length: Length of the list that should be split page: Page number, 1 <= page <= pagecount pagecount: The number of pages, >= 1 minindex: Receives the minimum index (inclusive). maxindex: Receives the maximum index (exclusive). Ensures 0 <= minindex <= maxindex <= length. */ inline void paging(u32 length, u32 page, u32 pagecount, u32 &minindex, u32 &maxindex) { if (length < 1 || pagecount < 1 || page < 1 || page > pagecount) { // Special cases or invalid parameters minindex = maxindex = 0; } else if(pagecount <= length) { // Less pages than entries in the list: // Each page contains at least one entry minindex = (length * (page-1) + (pagecount-1)) / pagecount; maxindex = (length * page + (pagecount-1)) / pagecount; } else { // More pages than entries in the list: // Make sure the empty pages are at the end if (page < length) { minindex = page-1; maxindex = page; } else { minindex = 0; maxindex = 0; } } } inline float cycle_shift(float value, float by = 0, float max = 1) { if (value + by < 0) return value + by + max; if (value + by > max) return value + by - max; return value + by; } inline bool is_power_of_two(u32 n) { return n != 0 && (n & (n - 1)) == 0; } // Compute next-higher power of 2 efficiently, e.g. for power-of-2 texture sizes. // Public Domain: https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 inline u32 npot2(u32 orig) { orig--; orig |= orig >> 1; orig |= orig >> 2; orig |= orig >> 4; orig |= orig >> 8; orig |= orig >> 16; return orig + 1; } // Gradual steps towards the target value in a wrapped (circular) system // using the shorter of both ways template inline void wrappedApproachShortest(T ¤t, const T target, const T stepsize, const T maximum) { T delta = target - current; if (delta < 0) delta += maximum; if (delta > stepsize && maximum - delta > stepsize) { current += (delta < maximum / 2) ? stepsize : -stepsize; if (current >= maximum) current -= maximum; } else { current = target; } } void setPitchYawRollRad(core::matrix4 &m, const v3f &rot); inline void setPitchYawRoll(core::matrix4 &m, const v3f &rot) { setPitchYawRollRad(m, rot * core::DEGTORAD64); } v3f getPitchYawRollRad(const core::matrix4 &m); inline v3f getPitchYawRoll(const core::matrix4 &m) { return getPitchYawRollRad(m) * core::RADTODEG64; } // Muliply the RGB value of a color linearly, and clamp to black/white inline irr::video::SColor multiplyColorValue(const irr::video::SColor &color, float mod) { return irr::video::SColor(color.getAlpha(), core::clamp(color.getRed() * mod, 0, 255), core::clamp(color.getGreen() * mod, 0, 255), core::clamp(color.getBlue() * mod, 0, 255)); }