haikuwebkit/Source/WebCore/Modules/webaudio/PeriodicWave.cpp

344 lines
13 KiB
C++

/*
* Copyright (C) 2012 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "PeriodicWave.h"
#include "BaseAudioContext.h"
#include "FFTFrame.h"
#include "VectorMath.h"
#include <algorithm>
// The number of bands per octave. Each octave will have this many entries in the wave tables.
constexpr unsigned NumberOfOctaveBands = 3;
// The max length of a periodic wave. This must be a power of two greater than
// or equal to 2048 and must be supported by the FFT routines.
constexpr unsigned MaxPeriodicWaveSize = 16384;
constexpr float CentsPerRange = 1200 / NumberOfOctaveBands;
namespace WebCore {
Ref<PeriodicWave> PeriodicWave::create(float sampleRate, Float32Array& real, Float32Array& imaginary)
{
ASSERT(real.length() == imaginary.length());
auto waveTable = adoptRef(*new PeriodicWave(sampleRate));
waveTable->createBandLimitedTables(real.data(), imaginary.data(), real.length());
return waveTable;
}
ExceptionOr<Ref<PeriodicWave>> PeriodicWave::create(BaseAudioContext& context, PeriodicWaveOptions&& options)
{
Vector<float> real;
Vector<float> imag;
if (options.real && options.imag) {
if (options.real->size() != options.imag->size())
return Exception { IndexSizeError, "real and imag have different lengths"_s };
if (options.real->size() < 2)
return Exception { IndexSizeError, "real's length cannot be less than 2"_s };
if (options.imag->size() < 2)
return Exception { IndexSizeError, "imag's length cannot be less than 2"_s };
real = WTFMove(*options.real);
imag = WTFMove(*options.imag);
} else if (options.real) {
if (options.real->size() < 2)
return Exception { IndexSizeError, "real's length cannot be less than 2"_s };
real = WTFMove(*options.real);
imag.fill(0, real.size());
} else if (options.imag) {
if (options.imag->size() < 2)
return Exception { IndexSizeError, "imag's length cannot be less than 2"_s };
imag = WTFMove(*options.imag);
real.fill(0, imag.size());
} else {
real.fill(0, 2);
imag.fill(0, 2);
imag[1] = 1;
}
real[0] = 0;
imag[0] = 0;
auto waveTable = adoptRef(*new PeriodicWave(context.sampleRate()));
waveTable->createBandLimitedTables(real.data(), imag.data(), real.size(), options.disableNormalization ? ShouldDisableNormalization::Yes : ShouldDisableNormalization::No);
return waveTable;
}
Ref<PeriodicWave> PeriodicWave::createSine(float sampleRate)
{
Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate));
waveTable->generateBasicWaveform(Type::Sine);
return waveTable;
}
Ref<PeriodicWave> PeriodicWave::createSquare(float sampleRate)
{
Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate));
waveTable->generateBasicWaveform(Type::Square);
return waveTable;
}
Ref<PeriodicWave> PeriodicWave::createSawtooth(float sampleRate)
{
Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate));
waveTable->generateBasicWaveform(Type::Sawtooth);
return waveTable;
}
Ref<PeriodicWave> PeriodicWave::createTriangle(float sampleRate)
{
Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate));
waveTable->generateBasicWaveform(Type::Triangle);
return waveTable;
}
PeriodicWave::PeriodicWave(float sampleRate)
: m_sampleRate(sampleRate)
, m_numberOfRanges(0.5 + NumberOfOctaveBands * log2f(periodicWaveSize()))
{
float nyquist = 0.5 * m_sampleRate;
m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
m_rateScale = periodicWaveSize() / m_sampleRate;
}
void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor)
{
// Negative frequencies are allowed, in which case we alias to the positive frequency.
fundamentalFrequency = fabsf(fundamentalFrequency);
// Calculate the pitch range.
float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5;
float centsAboveLowestFrequency = log2f(ratio) * 1200;
// Add one to round-up to the next range just in time to truncate partials before aliasing occurs.
float pitchRange = 1 + centsAboveLowestFrequency / CentsPerRange;
pitchRange = std::max(pitchRange, 0.0f);
pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1));
// The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials.
// It's a little confusing since the range index gets larger the more partials we cull out.
// So the lower table data will have a larger range index.
unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1;
lowerWaveData = m_bandLimitedTables[rangeIndex2]->data();
higherWaveData = m_bandLimitedTables[rangeIndex1]->data();
// Ranges from 0 -> 1 to interpolate between lower -> higher.
tableInterpolationFactor = pitchRange - rangeIndex1;
}
unsigned PeriodicWave::maxNumberOfPartials() const
{
return periodicWaveSize() / 2;
}
unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const
{
// Number of cents below nyquist where we cull partials.
float centsToCull = rangeIndex * CentsPerRange;
// A value from 0 -> 1 representing what fraction of the partials to keep.
float cullingScale = pow(2, -centsToCull / 1200);
// The very top range will have all the partials culled.
unsigned numberOfPartials = cullingScale * maxNumberOfPartials();
return numberOfPartials;
}
// Convert into time-domain wave tables.
// One table is created for each range for non-aliasing playback at different playback rates.
// Thus, higher ranges have more high-frequency partials culled out.
void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents, ShouldDisableNormalization disableNormalization)
{
float normalizationScale = 0.5;
unsigned fftSize = periodicWaveSize();
unsigned halfSize = fftSize / 2;
numberOfComponents = std::min(numberOfComponents, halfSize);
m_bandLimitedTables.reserveCapacity(m_numberOfRanges);
for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) {
// This FFTFrame is used to cull partials (represented by frequency bins).
FFTFrame frame(fftSize);
auto& realP = frame.realData();
auto& imagP = frame.imagData();
RELEASE_ASSERT(realP.size() >= numberOfComponents);
RELEASE_ASSERT(imagP.size() >= numberOfComponents);
// Copy from loaded frequency data and scale.
VectorMath::multiplyByScalar(realData, fftSize, realP.data(), numberOfComponents);
VectorMath::multiplyByScalar(imagData, -static_cast<float>(fftSize), imagP.data(), numberOfComponents);
// Find the starting bin where we should start culling.
// We need to clear out the highest frequencies to band-limit the waveform.
unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);
// If fewer components were provided than 1/2 FFT size, then clear the
// remaining bins. We also need to cull the aliasing partials for this
// pitch range.
unsigned clampedNumberOfComponents = std::min(numberOfComponents, numberOfPartials + 1);
if (clampedNumberOfComponents < halfSize) {
size_t numBytes = (halfSize - clampedNumberOfComponents) * sizeof(float);
memset(&realP[clampedNumberOfComponents], 0, numBytes);
memset(&imagP[clampedNumberOfComponents], 0, numBytes);
}
// Clear packed-nyquist and any DC-offset.
realP[0] = 0;
imagP[0] = 0;
// Create the band-limited table.
unsigned waveSize = periodicWaveSize();
m_bandLimitedTables.append(makeUnique<AudioFloatArray>(waveSize));
// Apply an inverse FFT to generate the time-domain table data.
float* data = m_bandLimitedTables[rangeIndex]->data();
frame.doInverseFFT(data);
// For the first range (which has the highest power), calculate its peak value then compute normalization scale.
if (disableNormalization == ShouldDisableNormalization::No) {
if (!rangeIndex) {
float maxValue = VectorMath::maximumMagnitude(data, fftSize);
if (maxValue)
normalizationScale = 1.0f / maxValue;
}
}
// Apply normalization scale.
VectorMath::multiplyByScalar(data, normalizationScale, data, fftSize);
}
}
void PeriodicWave::generateBasicWaveform(Type shape)
{
unsigned fftSize = periodicWaveSize();
unsigned halfSize = fftSize / 2;
AudioFloatArray real(halfSize);
AudioFloatArray imag(halfSize);
float* realP = real.data();
float* imagP = imag.data();
// Clear DC and Nyquist.
realP[0] = 0;
imagP[0] = 0;
for (unsigned n = 1; n < halfSize; ++n) {
float piFactor = 2 / (n * piFloat);
// All waveforms are odd functions with a positive slope at time 0. Hence
// the coefficients for cos() are always 0.
// Fourier coefficients according to standard definition:
// b = 1/pi*integrate(f(x)*sin(n*x), x, -pi, pi)
// = 2/pi*integrate(f(x)*sin(n*x), x, 0, pi)
// since f(x) is an odd function.
float b; // Coefficient for sin().
// Calculate Fourier coefficients depending on the shape.
// Note that the overall scaling (magnitude) of the waveforms is normalized in createBandLimitedTables().
switch (shape) {
case Type::Sine:
// Standard sine wave function.
b = (n == 1) ? 1 : 0;
break;
case Type::Square:
// Square-shaped waveform with the first half its maximum value and the
// second half its minimum value.
//
// See http://mathworld.wolfram.com/FourierSeriesSquareWave.html
//
// b[n] = 2/n/pi*(1-(-1)^n)
// = 4/n/pi for n odd and 0 otherwise.
// = 2*(2/(n*pi)) for n odd
b = (n & 1) ? 2 * piFactor : 0;
break;
case Type::Sawtooth:
// Sawtooth-shaped waveform with the first half ramping from zero to
// maximum and the second half from minimum to zero.
//
// b[n] = -2*(-1)^n/pi/n
// = (2/(n*pi))*(-1)^(n+1)
b = piFactor * ((n & 1) ? 1 : -1);
break;
case Type::Triangle:
// Triangle-shaped waveform going from 0 at time 0 to 1 at time pi/2 and
// back to 0 at time pi.
//
// See http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
//
// b[n] = 8*sin(pi*k/2)/(pi*k)^2
// = 8/pi^2/n^2*(-1)^((n-1)/2) for n odd and 0 otherwise
// = 2*(2/(n*pi))^2 * (-1)^((n-1)/2)
if (n & 1)
b = 2 * (piFactor * piFactor) * ((((n - 1) >> 1) & 1) ? -1 : 1);
else
b = 0;
break;
}
realP[n] = 0;
imagP[n] = b;
}
createBandLimitedTables(realP, imagP, halfSize);
}
unsigned PeriodicWave::periodicWaveSize() const
{
// Choose an appropriate wave size for the given sample rate. This allows us
// to use shorter FFTs when possible to limit the complexity. The breakpoints
// here are somewhat arbitrary, but we want sample rates around 44.1 kHz or so
// to have a size of 4096 to preserve backward compatibility.
if (m_sampleRate <= 24000)
return 2048;
if (m_sampleRate <= 88200)
return 4096;
return MaxPeriodicWaveSize;
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)