/* * Copyright (C) 2011 Apple Inc. All rights reserved. * Copyright (C) 2013-2017 Igalia S.L. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "RenderGrid.h" #include "GridArea.h" #include "GridLayoutFunctions.h" #include "GridPositionsResolver.h" #include "GridTrackSizingAlgorithm.h" #include "InspectorInstrumentation.h" #include "LayoutRepainter.h" #include "RenderChildIterator.h" #include "RenderLayer.h" #include "RenderLayoutState.h" #include "RenderTreeBuilder.h" #include "RenderView.h" #include #include namespace WebCore { WTF_MAKE_ISO_ALLOCATED_IMPL(RenderGrid); enum TrackSizeRestriction { AllowInfinity, ForbidInfinity, }; RenderGrid::RenderGrid(Element& element, RenderStyle&& style) : RenderBlock(element, WTFMove(style), 0) , m_grid(*this) , m_trackSizingAlgorithm(this, m_grid) { // All of our children must be block level. setChildrenInline(false); InspectorInstrumentation::nodeLayoutContextChanged(element, this); } RenderGrid::~RenderGrid() { InspectorInstrumentation::nodeLayoutContextChanged(element(), nullptr); } StyleSelfAlignmentData RenderGrid::selfAlignmentForChild(GridAxis axis, const RenderBox& child, const RenderStyle* gridStyle) const { return axis == GridRowAxis ? justifySelfForChild(child, StretchingMode::Any, gridStyle) : alignSelfForChild(child, StretchingMode::Any, gridStyle); } bool RenderGrid::selfAlignmentChangedToStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const { return selfAlignmentForChild(axis, child, &oldStyle).position() != ItemPosition::Stretch && selfAlignmentForChild(axis, child, &newStyle).position() == ItemPosition::Stretch; } bool RenderGrid::selfAlignmentChangedFromStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const { return selfAlignmentForChild(axis, child, &oldStyle).position() == ItemPosition::Stretch && selfAlignmentForChild(axis, child, &newStyle).position() != ItemPosition::Stretch; } void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { RenderBlock::styleDidChange(diff, oldStyle); if (!oldStyle || diff != StyleDifference::Layout) return; const RenderStyle& newStyle = this->style(); if (oldStyle->resolvedAlignItems(selfAlignmentNormalBehavior(this)).position() == ItemPosition::Stretch) { // Style changes on the grid container implying stretching (to-stretch) or // shrinking (from-stretch) require the affected items to be laid out again. // These logic only applies to 'stretch' since the rest of the alignment // values don't change the size of the box. // In any case, the items' overrideSize will be cleared and recomputed (if // necessary) as part of the Grid layout logic, triggered by this style // change. for (auto& child : childrenOfType(*this)) { if (child.isOutOfFlowPositioned()) continue; if (selfAlignmentChangedToStretch(GridRowAxis, *oldStyle, newStyle, child) || selfAlignmentChangedFromStretch(GridRowAxis, *oldStyle, newStyle, child) || selfAlignmentChangedToStretch(GridColumnAxis, *oldStyle, newStyle, child) || selfAlignmentChangedFromStretch(GridColumnAxis, *oldStyle, newStyle, child)) { child.setNeedsLayout(); } } } if (explicitGridDidResize(*oldStyle) || namedGridLinesDefinitionDidChange(*oldStyle) || oldStyle->gridAutoFlow() != style().gridAutoFlow() || (style().gridAutoRepeatColumns().size() || style().gridAutoRepeatRows().size())) dirtyGrid(); } bool RenderGrid::explicitGridDidResize(const RenderStyle& oldStyle) const { return oldStyle.gridColumns().size() != style().gridColumns().size() || oldStyle.gridRows().size() != style().gridRows().size() || oldStyle.namedGridAreaColumnCount() != style().namedGridAreaColumnCount() || oldStyle.namedGridAreaRowCount() != style().namedGridAreaRowCount() || oldStyle.gridAutoRepeatColumns().size() != style().gridAutoRepeatColumns().size() || oldStyle.gridAutoRepeatRows().size() != style().gridAutoRepeatRows().size(); } bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle& oldStyle) const { return oldStyle.namedGridRowLines() != style().namedGridRowLines() || oldStyle.namedGridColumnLines() != style().namedGridColumnLines(); } // This method optimizes the gutters computation by skiping the available size // call if gaps are fixed size (it's only needed for percentages). std::optional RenderGrid::availableSpaceForGutters(GridTrackSizingDirection direction) const { bool isRowAxis = direction == ForColumns; const GapLength& gapLength = isRowAxis ? style().columnGap() : style().rowGap(); if (gapLength.isNormal() || !gapLength.length().isPercentOrCalculated()) return std::nullopt; return isRowAxis ? availableLogicalWidth() : contentLogicalHeight(); } void RenderGrid::computeTrackSizesForDefiniteSize(GridTrackSizingDirection direction, LayoutUnit availableSpace) { m_trackSizingAlgorithm.setup(direction, numTracks(direction, m_grid), TrackSizing, availableSpace); m_trackSizingAlgorithm.run(); ASSERT(m_trackSizingAlgorithm.tracksAreWiderThanMinTrackBreadth()); } void RenderGrid::repeatTracksSizingIfNeeded(LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows) { // In orthogonal flow cases column track's size is determined by using the computed // row track's size, which it was estimated during the first cycle of the sizing // algorithm. Hence we need to repeat computeUsedBreadthOfGridTracks for both, // columns and rows, to determine the final values. // TODO (lajava): orthogonal flows is just one of the cases which may require // a new cycle of the sizing algorithm; there may be more. In addition, not all the // cases with orthogonal flows require this extra cycle; we need a more specific // condition to detect whether child's min-content contribution has changed or not. if (m_hasAnyOrthogonalItem || m_trackSizingAlgorithm.hasAnyPercentSizedRowsIndefiniteHeight()) { computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); computeContentPositionAndDistributionOffset(ForColumns, m_trackSizingAlgorithm.freeSpace(ForColumns).value(), nonCollapsedTracks(ForColumns)); computeTrackSizesForDefiniteSize(ForRows, availableSpaceForRows); computeContentPositionAndDistributionOffset(ForRows, m_trackSizingAlgorithm.freeSpace(ForRows).value(), nonCollapsedTracks(ForRows)); } } bool RenderGrid::canPerformSimplifiedLayout() const { // We cannot perform a simplified layout if we need to position the items and we have some // positioned items to be laid out. if (m_grid.needsItemsPlacement() && posChildNeedsLayout()) return false; return RenderBlock::canPerformSimplifiedLayout(); } void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit) { ASSERT(needsLayout()); if (!relayoutChildren && simplifiedLayout()) return; LayoutRepainter repainter(*this, checkForRepaintDuringLayout()); { LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode()); preparePaginationBeforeBlockLayout(relayoutChildren); beginUpdateScrollInfoAfterLayoutTransaction(); LayoutSize previousSize = size(); // FIXME: We should use RenderBlock::hasDefiniteLogicalHeight() only but it does not work for positioned stuff. // FIXME: Consider caching the hasDefiniteLogicalHeight value throughout the layout. // FIXME: We might need to cache the hasDefiniteLogicalHeight if the call of RenderBlock::hasDefiniteLogicalHeight() causes a relevant performance regression. bool hasDefiniteLogicalHeight = RenderBlock::hasDefiniteLogicalHeight() || hasOverridingLogicalHeight() || computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt); m_hasAnyOrthogonalItem = false; for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isOutOfFlowPositioned()) continue; // Grid's layout logic controls the grid item's override height, hence we need to // clear any override height set previously, so it doesn't interfere in current layout // execution. Grid never uses the override width, that's why we don't need to clear it. child->clearOverridingLogicalHeight(); // We may need to repeat the track sizing in case of any grid item was orthogonal. if (GridLayoutFunctions::isOrthogonalChild(*this, *child)) m_hasAnyOrthogonalItem = true; // We keep a cache of items with baseline as alignment values so // that we only compute the baseline shims for such items. This // cache is needed for performance related reasons due to the // cost of evaluating the item's participation in a baseline // context during the track sizing algorithm. if (isBaselineAlignmentForChild(*child, GridColumnAxis)) m_trackSizingAlgorithm.cacheBaselineAlignedItem(*child, GridColumnAxis); if (isBaselineAlignmentForChild(*child, GridRowAxis)) m_trackSizingAlgorithm.cacheBaselineAlignedItem(*child, GridRowAxis); } m_baselineItemsCached = true; resetLogicalHeightBeforeLayoutIfNeeded(); updateLogicalWidth(); // Fieldsets need to find their legend and position it inside the border of the object. // The legend then gets skipped during normal layout. The same is true for ruby text. // It doesn't get included in the normal layout process but is instead skipped. layoutExcludedChildren(relayoutChildren); LayoutUnit availableSpaceForColumns = availableLogicalWidth(); placeItemsOnGrid(m_trackSizingAlgorithm, availableSpaceForColumns); m_trackSizingAlgorithm.setAvailableSpace(ForColumns, availableSpaceForColumns); performGridItemsPreLayout(m_trackSizingAlgorithm); // 1- First, the track sizing algorithm is used to resolve the sizes of the // grid columns. // At this point the logical width is always definite as the above call to // updateLogicalWidth() properly resolves intrinsic sizes. We cannot do the // same for heights though because many code paths inside // updateLogicalHeight() require a previous call to setLogicalHeight() to // resolve heights properly (like for positioned items for example). computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); // 1.5- Compute Content Distribution offsets for column tracks computeContentPositionAndDistributionOffset(ForColumns, m_trackSizingAlgorithm.freeSpace(ForColumns).value(), nonCollapsedTracks(ForColumns)); // 2- Next, the track sizing algorithm resolves the sizes of the grid rows, // using the grid column sizes calculated in the previous step. bool shouldRecomputeHeight = false; if (!hasDefiniteLogicalHeight) { computeTrackSizesForIndefiniteSize(m_trackSizingAlgorithm, ForRows); if (shouldApplySizeContainment(*this)) shouldRecomputeHeight = true; } else computeTrackSizesForDefiniteSize(ForRows, availableLogicalHeight(ExcludeMarginBorderPadding)); LayoutUnit trackBasedLogicalHeight = m_trackSizingAlgorithm.computeTrackBasedSize() + borderAndPaddingLogicalHeight() + scrollbarLogicalHeight(); if (shouldRecomputeHeight) computeTrackSizesForDefiniteSize(ForRows, trackBasedLogicalHeight); setLogicalHeight(trackBasedLogicalHeight); LayoutUnit oldClientAfterEdge = clientLogicalBottom(); updateLogicalHeight(); // Once grid's indefinite height is resolved, we can compute the // available free space for Content Alignment. if (!hasDefiniteLogicalHeight) m_trackSizingAlgorithm.setFreeSpace(ForRows, logicalHeight() - trackBasedLogicalHeight); // 2.5- Compute Content Distribution offsets for rows tracks computeContentPositionAndDistributionOffset(ForRows, m_trackSizingAlgorithm.freeSpace(ForRows).value(), nonCollapsedTracks(ForRows)); // 3- If the min-content contribution of any grid items have changed based on the row // sizes calculated in step 2, steps 1 and 2 are repeated with the new min-content // contribution (once only). repeatTracksSizingIfNeeded(availableSpaceForColumns, contentLogicalHeight()); // Grid container should have the minimum height of a line if it's editable. That does not affect track sizing though. if (hasLineIfEmpty()) { LayoutUnit minHeightForEmptyLine = borderAndPaddingLogicalHeight() + lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes) + scrollbarLogicalHeight(); setLogicalHeight(std::max(logicalHeight(), minHeightForEmptyLine)); } layoutGridItems(); m_trackSizingAlgorithm.reset(); endAndCommitUpdateScrollInfoAfterLayoutTransaction(); if (size() != previousSize) relayoutChildren = true; m_outOfFlowItemColumn.clear(); m_outOfFlowItemRow.clear(); layoutPositionedObjects(relayoutChildren || isDocumentElementRenderer()); computeOverflow(oldClientAfterEdge); } updateLayerTransform(); // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if // we overflow or not. updateScrollInfoAfterLayout(); repainter.repaintAfterLayout(); clearNeedsLayout(); m_trackSizingAlgorithm.clearBaselineItemsCache(); m_baselineItemsCached = false; } LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction, std::optional availableSize) const { ASSERT(!availableSize || *availableSize >= 0); const GapLength& gapLength = direction == ForColumns? style().columnGap() : style().rowGap(); if (gapLength.isNormal()) return 0_lu; return valueForLength(gapLength.length(), availableSize.value_or(0)); } LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction) const { return gridGap(direction, availableSpaceForGutters(direction)); } LayoutUnit RenderGrid::gridItemOffset(GridTrackSizingDirection direction) const { return direction == ForRows ? m_offsetBetweenRows.distributionOffset : m_offsetBetweenColumns.distributionOffset; } LayoutUnit RenderGrid::guttersSize(const Grid& grid, GridTrackSizingDirection direction, unsigned startLine, unsigned span, std::optional availableSize) const { if (span <= 1) return { }; LayoutUnit gap = gridGap(direction, availableSize); // Fast path, no collapsing tracks. if (!grid.hasAutoRepeatEmptyTracks(direction)) return gap * (span - 1); // If there are collapsing tracks we need to be sure that gutters are properly collapsed. Apart // from that, if we have a collapsed track in the edges of the span we're considering, we need // to move forward (or backwards) in order to know whether the collapsed tracks reach the end of // the grid (so the gap becomes 0) or there is a non empty track before that. LayoutUnit gapAccumulator; unsigned endLine = startLine + span; for (unsigned line = startLine; line < endLine - 1; ++line) { if (!grid.isEmptyAutoRepeatTrack(direction, line)) gapAccumulator += gap; } // The above loop adds one extra gap for trailing collapsed tracks. if (gapAccumulator && grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { ASSERT(gapAccumulator >= gap); gapAccumulator -= gap; } // If the startLine is the start line of a collapsed track we need to go backwards till we reach // a non collapsed track. If we find a non collapsed track we need to add that gap. size_t nonEmptyTracksBeforeStartLine = 0; if (startLine && grid.isEmptyAutoRepeatTrack(direction, startLine)) { nonEmptyTracksBeforeStartLine = startLine; auto begin = grid.autoRepeatEmptyTracks(direction)->begin(); for (auto it = begin; *it != startLine; ++it) { ASSERT(nonEmptyTracksBeforeStartLine); --nonEmptyTracksBeforeStartLine; } if (nonEmptyTracksBeforeStartLine) gapAccumulator += gap; } // If the endLine is the end line of a collapsed track we need to go forward till we reach a non // collapsed track. If we find a non collapsed track we need to add that gap. if (grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { unsigned nonEmptyTracksAfterEndLine = grid.numTracks(direction) - endLine; auto currentEmptyTrack = grid.autoRepeatEmptyTracks(direction)->find(endLine - 1); auto endEmptyTrack = grid.autoRepeatEmptyTracks(direction)->end(); // HashSet iterators do not implement operator- so we have to manually iterate to know the number of remaining empty tracks. for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) { ASSERT(nonEmptyTracksAfterEndLine >= 1); --nonEmptyTracksAfterEndLine; } if (nonEmptyTracksAfterEndLine) { // We shouldn't count the gap twice if the span starts and ends in a collapsed track bewtween two non-empty tracks. if (!nonEmptyTracksBeforeStartLine) gapAccumulator += gap; } else if (nonEmptyTracksBeforeStartLine) { // We shouldn't count the gap if the the span starts and ends in a collapsed but there isn't non-empty tracks afterwards (it's at the end of the grid). gapAccumulator -= gap; } } return gapAccumulator; } void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const { LayoutUnit childMinWidth; LayoutUnit childMaxWidth; bool hadExcludedChildren = computePreferredWidthsForExcludedChildren(childMinWidth, childMaxWidth); Grid grid(const_cast(*this)); GridTrackSizingAlgorithm algorithm(this, grid); placeItemsOnGrid(algorithm, std::nullopt); performGridItemsPreLayout(algorithm); if (m_baselineItemsCached) algorithm.copyBaselineItemsCache(m_trackSizingAlgorithm, GridRowAxis); else { for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isOutOfFlowPositioned()) continue; if (isBaselineAlignmentForChild(*child, GridRowAxis)) algorithm.cacheBaselineAlignedItem(*child, GridRowAxis); } } computeTrackSizesForIndefiniteSize(algorithm, ForColumns, &minLogicalWidth, &maxLogicalWidth); if (hadExcludedChildren) { minLogicalWidth = std::max(minLogicalWidth, childMinWidth); maxLogicalWidth = std::max(maxLogicalWidth, childMaxWidth); } LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth(); minLogicalWidth += scrollbarWidth; maxLogicalWidth += scrollbarWidth; } void RenderGrid::computeTrackSizesForIndefiniteSize(GridTrackSizingAlgorithm& algorithm, GridTrackSizingDirection direction, LayoutUnit* minIntrinsicSize, LayoutUnit* maxIntrinsicSize) const { const Grid& grid = algorithm.grid(); algorithm.setup(direction, numTracks(direction, grid), IntrinsicSizeComputation, std::nullopt); algorithm.run(); size_t numberOfTracks = algorithm.tracks(direction).size(); LayoutUnit totalGuttersSize = guttersSize(grid, direction, 0, numberOfTracks, std::nullopt); if (minIntrinsicSize) *minIntrinsicSize = algorithm.minContentSize() + totalGuttersSize; if (maxIntrinsicSize) *maxIntrinsicSize = algorithm.maxContentSize() + totalGuttersSize; ASSERT(algorithm.tracksAreWiderThanMinTrackBreadth()); } unsigned RenderGrid::computeAutoRepeatTracksCount(GridTrackSizingDirection direction, std::optional availableSize) const { ASSERT(!availableSize || availableSize.value() != -1); bool isRowAxis = direction == ForColumns; const auto& autoRepeatTracks = isRowAxis ? style().gridAutoRepeatColumns() : style().gridAutoRepeatRows(); unsigned autoRepeatTrackListLength = autoRepeatTracks.size(); if (!autoRepeatTrackListLength) return 0; bool needsToFulfillMinimumSize = false; if (!availableSize) { const Length& maxSize = isRowAxis ? style().logicalMaxWidth() : style().logicalMaxHeight(); std::optional containingBlockAvailableSize; std::optional availableMaxSize; if (maxSize.isSpecified()) { if (maxSize.isPercentOrCalculated()) containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); LayoutUnit maxSizeValue = valueForLength(maxSize, containingBlockAvailableSize.value_or(LayoutUnit())); availableMaxSize = isRowAxis ? adjustContentBoxLogicalWidthForBoxSizing(maxSizeValue, maxSize.type()) : adjustContentBoxLogicalHeightForBoxSizing(maxSizeValue); } const Length& minSize = isRowAxis ? style().logicalMinWidth() : style().logicalMinHeight(); if (!availableMaxSize && !minSize.isSpecified()) return autoRepeatTrackListLength; std::optional availableMinSize; if (minSize.isSpecified()) { if (!containingBlockAvailableSize && minSize.isPercentOrCalculated()) containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); LayoutUnit minSizeValue = valueForLength(minSize, containingBlockAvailableSize.value_or(LayoutUnit())); availableMinSize = isRowAxis ? adjustContentBoxLogicalWidthForBoxSizing(minSizeValue, minSize.type()) : adjustContentBoxLogicalHeightForBoxSizing(minSizeValue); if (!maxSize.isSpecified()) needsToFulfillMinimumSize = true; } availableSize = std::max(availableMinSize.value_or(LayoutUnit()), availableMaxSize.value_or(LayoutUnit())); } LayoutUnit autoRepeatTracksSize; for (auto& autoTrackSize : autoRepeatTracks) { ASSERT(autoTrackSize.minTrackBreadth().isLength()); ASSERT(!autoTrackSize.minTrackBreadth().isFlex()); bool hasDefiniteMaxTrackSizingFunction = autoTrackSize.maxTrackBreadth().isLength() && !autoTrackSize.maxTrackBreadth().isContentSized(); auto trackLength = hasDefiniteMaxTrackSizingFunction ? autoTrackSize.maxTrackBreadth().length() : autoTrackSize.minTrackBreadth().length(); autoRepeatTracksSize += valueForLength(trackLength, availableSize.value()); } // For the purpose of finding the number of auto-repeated tracks, the UA must floor the track size to a UA-specified // value to avoid division by zero. It is suggested that this floor be 1px. autoRepeatTracksSize = std::max(1_lu, autoRepeatTracksSize); // There will be always at least 1 auto-repeat track, so take it already into account when computing the total track size. LayoutUnit tracksSize = autoRepeatTracksSize; auto& trackSizes = isRowAxis ? style().gridColumns() : style().gridRows(); for (const auto& track : trackSizes) { bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() && !track.maxTrackBreadth().isContentSized(); ASSERT(hasDefiniteMaxTrackBreadth || (track.minTrackBreadth().isLength() && !track.minTrackBreadth().isContentSized())); tracksSize += valueForLength(hasDefiniteMaxTrackBreadth ? track.maxTrackBreadth().length() : track.minTrackBreadth().length(), availableSize.value()); } // Add gutters as if auto repeat tracks were only repeated once. Gaps between different repetitions will be added later when // computing the number of repetitions of the auto repeat(). LayoutUnit gapSize = gridGap(direction, availableSize); tracksSize += gapSize * (trackSizes.size() + autoRepeatTrackListLength - 1); LayoutUnit freeSpace = availableSize.value() - tracksSize; if (freeSpace <= 0) return autoRepeatTrackListLength; LayoutUnit autoRepeatSizeWithGap = autoRepeatTracksSize + gapSize * autoRepeatTrackListLength; unsigned repetitions = 1 + (freeSpace / autoRepeatSizeWithGap).toUnsigned(); freeSpace -= autoRepeatSizeWithGap * (repetitions - 1); ASSERT(freeSpace >= 0); // Provided the grid container does not have a definite size or max-size in the relevant axis, // if the min size is definite then the number of repetitions is the largest possible positive // integer that fulfills that minimum requirement. if (needsToFulfillMinimumSize && freeSpace) ++repetitions; return repetitions * autoRepeatTrackListLength; } std::unique_ptr RenderGrid::computeEmptyTracksForAutoRepeat(Grid& grid, GridTrackSizingDirection direction) const { bool isRowAxis = direction == ForColumns; if ((isRowAxis && style().gridAutoRepeatColumnsType() != AutoRepeatType::Fit) || (!isRowAxis && style().gridAutoRepeatRowsType() != AutoRepeatType::Fit)) return nullptr; std::unique_ptr emptyTrackIndexes; unsigned insertionPoint = isRowAxis ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); unsigned firstAutoRepeatTrack = insertionPoint + grid.explicitGridStart(direction); unsigned lastAutoRepeatTrack = firstAutoRepeatTrack + grid.autoRepeatTracks(direction); if (!grid.hasGridItems() || shouldApplySizeContainment(*this)) { emptyTrackIndexes = makeUnique(); for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) emptyTrackIndexes->add(trackIndex); } else { for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) { GridIterator iterator(grid, direction, trackIndex); if (!iterator.nextGridItem()) { if (!emptyTrackIndexes) emptyTrackIndexes = makeUnique(); emptyTrackIndexes->add(trackIndex); } } } return emptyTrackIndexes; } unsigned RenderGrid::clampAutoRepeatTracks(GridTrackSizingDirection direction, unsigned autoRepeatTracks) const { if (!autoRepeatTracks) return 0; unsigned insertionPoint = direction == ForColumns ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); unsigned maxTracks = static_cast(GridPosition::max()); if (!insertionPoint) return std::min(autoRepeatTracks, maxTracks); if (insertionPoint >= maxTracks) return 0; return std::min(autoRepeatTracks, maxTracks - insertionPoint); } // FIXME: We shouldn't have to pass the available logical width as argument. The problem is that // availableLogicalWidth() does always return a value even if we cannot resolve it like when // computing the intrinsic size (preferred widths). That's why we pass the responsibility to the // caller who does know whether the available logical width is indefinite or not. void RenderGrid::placeItemsOnGrid(GridTrackSizingAlgorithm& algorithm, std::optional availableLogicalWidth) const { Grid& grid = algorithm.mutableGrid(); unsigned autoRepeatColumns = computeAutoRepeatTracksCount(ForColumns, availableLogicalWidth); unsigned autoRepeatRows = computeAutoRepeatTracksCount(ForRows, availableLogicalHeightForPercentageComputation()); autoRepeatRows = clampAutoRepeatTracks(ForRows, autoRepeatRows); autoRepeatColumns = clampAutoRepeatTracks(ForColumns, autoRepeatColumns); if (autoRepeatColumns != grid.autoRepeatTracks(ForColumns) || autoRepeatRows != grid.autoRepeatTracks(ForRows)) { grid.setNeedsItemsPlacement(true); grid.setAutoRepeatTracks(autoRepeatRows, autoRepeatColumns); } if (!grid.needsItemsPlacement()) return; ASSERT(!grid.hasGridItems()); populateExplicitGridAndOrderIterator(grid); Vector autoMajorAxisAutoGridItems; Vector specifiedMajorAxisAutoGridItems; for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { if (grid.orderIterator().shouldSkipChild(*child)) continue; // Grid items should use the grid area sizes instead of the containing block (grid container) // sizes, we initialize the overrides here if needed to ensure it. if (!child->hasOverridingContainingBlockContentLogicalWidth()) child->setOverridingContainingBlockContentLogicalWidth(LayoutUnit()); if (!child->hasOverridingContainingBlockContentLogicalHeight()) child->setOverridingContainingBlockContentLogicalHeight(std::nullopt); GridArea area = grid.gridItemArea(*child); if (!area.rows.isIndefinite()) area.rows.translate(grid.explicitGridStart(ForRows)); if (!area.columns.isIndefinite()) area.columns.translate(grid.explicitGridStart(ForColumns)); if (area.rows.isIndefinite() || area.columns.isIndefinite()) { grid.setGridItemArea(*child, area); bool majorAxisDirectionIsForColumns = autoPlacementMajorAxisDirection() == ForColumns; if ((majorAxisDirectionIsForColumns && area.columns.isIndefinite()) || (!majorAxisDirectionIsForColumns && area.rows.isIndefinite())) autoMajorAxisAutoGridItems.append(child); else specifiedMajorAxisAutoGridItems.append(child); continue; } grid.insert(*child, { area.rows, area.columns }); } #if ASSERT_ENABLED if (grid.hasGridItems()) { ASSERT(grid.numTracks(ForRows) >= GridPositionsResolver::explicitGridRowCount(style(), grid.autoRepeatTracks(ForRows))); ASSERT(grid.numTracks(ForColumns) >= GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns))); } #endif placeSpecifiedMajorAxisItemsOnGrid(grid, specifiedMajorAxisAutoGridItems); placeAutoMajorAxisItemsOnGrid(grid, autoMajorAxisAutoGridItems); // Compute collapsible tracks for auto-fit. grid.setAutoRepeatEmptyColumns(computeEmptyTracksForAutoRepeat(grid, ForColumns)); grid.setAutoRepeatEmptyRows(computeEmptyTracksForAutoRepeat(grid, ForRows)); grid.setNeedsItemsPlacement(false); #if ASSERT_ENABLED for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { if (grid.orderIterator().shouldSkipChild(*child)) continue; GridArea area = grid.gridItemArea(*child); ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite()); } #endif } void RenderGrid::performGridItemsPreLayout(const GridTrackSizingAlgorithm& algorithm) const { ASSERT(!algorithm.grid().needsItemsPlacement()); // FIXME: We need a way when we are calling this during intrinsic size compuation before performing // the layout. Maybe using the PreLayout phase ? for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isOutOfFlowPositioned()) continue; // Orthogonal items should be laid out in order to properly compute content-sized tracks that may depend on item's intrinsic size. // We also need to properly estimate its grid area size, since it may affect to the baseline shims if such item particiaptes in baseline alignment. if (GridLayoutFunctions::isOrthogonalChild(*this, *child)) { updateGridAreaLogicalSize(*child, algorithm.estimatedGridAreaBreadthForChild(*child, ForColumns), algorithm.estimatedGridAreaBreadthForChild(*child, ForRows)); child->layoutIfNeeded(); continue; } // We need to layout the item to know whether it must synthesize its // baseline or not, which may imply a cyclic sizing dependency. // FIXME: Can we avoid it ? if (isBaselineAlignmentForChild(*child)) { updateGridAreaLogicalSize(*child, algorithm.estimatedGridAreaBreadthForChild(*child, ForColumns), algorithm.estimatedGridAreaBreadthForChild(*child, ForRows)); child->layoutIfNeeded(); } } } void RenderGrid::populateExplicitGridAndOrderIterator(Grid& grid) const { OrderIteratorPopulator populator(grid.orderIterator()); unsigned explicitRowStart = 0; unsigned explicitColumnStart = 0; unsigned autoRepeatRows = grid.autoRepeatTracks(ForRows); unsigned autoRepeatColumns = grid.autoRepeatTracks(ForColumns); unsigned maximumRowIndex = GridPositionsResolver::explicitGridRowCount(style(), autoRepeatRows); unsigned maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(style(), autoRepeatColumns); for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (!populator.collectChild(*child)) continue; GridSpan rowPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForRows, autoRepeatRows); if (!rowPositions.isIndefinite()) { explicitRowStart = std::max(explicitRowStart, -rowPositions.untranslatedStartLine()); maximumRowIndex = std::max(maximumRowIndex, rowPositions.untranslatedEndLine()); } else { // Grow the grid for items with a definite row span, getting the largest such span. unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*child, ForRows); maximumRowIndex = std::max(maximumRowIndex, spanSize); } GridSpan columnPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForColumns, autoRepeatColumns); if (!columnPositions.isIndefinite()) { explicitColumnStart = std::max(explicitColumnStart, -columnPositions.untranslatedStartLine()); maximumColumnIndex = std::max(maximumColumnIndex, columnPositions.untranslatedEndLine()); } else { // Grow the grid for items with a definite column span, getting the largest such span. unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*child, ForColumns); maximumColumnIndex = std::max(maximumColumnIndex, spanSize); } grid.setGridItemArea(*child, { rowPositions, columnPositions }); } grid.setExplicitGridStart(explicitRowStart, explicitColumnStart); grid.ensureGridSize(maximumRowIndex + explicitRowStart, maximumColumnIndex + explicitColumnStart); } std::unique_ptr RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(Grid& grid, const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const { GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns; const unsigned endOfCrossDirection = grid.numTracks(crossDirection); unsigned crossDirectionSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(gridItem, crossDirection); GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize); return makeUnique(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions); } void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Grid& grid, const Vector& autoGridItems) const { bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns; bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); // Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on // that track. This is needed to implement "sparse" packing for items locked to a given track. // See http://dev.w3.org/csswg/css-grid/#auto-placement-algorithm HashMap, WTF::UnsignedWithZeroKeyHashTraits> minorAxisCursors; for (auto& autoGridItem : autoGridItems) { GridSpan majorAxisPositions = grid.gridItemSpan(*autoGridItem, autoPlacementMajorAxisDirection()); ASSERT(majorAxisPositions.isTranslatedDefinite()); ASSERT(grid.gridItemSpan(*autoGridItem, autoPlacementMinorAxisDirection()).isIndefinite()); unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*autoGridItem, autoPlacementMinorAxisDirection()); unsigned majorAxisInitialPosition = majorAxisPositions.startLine(); GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition)); std::unique_ptr emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisSpanSize); if (!emptyGridArea) emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, *autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions); grid.insert(*autoGridItem, *emptyGridArea); if (!isGridAutoFlowDense) minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.startLine() : emptyGridArea->columns.startLine()); } } void RenderGrid::placeAutoMajorAxisItemsOnGrid(Grid& grid, const Vector& autoGridItems) const { AutoPlacementCursor autoPlacementCursor = {0, 0}; bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); for (auto& autoGridItem : autoGridItems) { placeAutoMajorAxisItemOnGrid(grid, *autoGridItem, autoPlacementCursor); if (isGridAutoFlowDense) { autoPlacementCursor.first = 0; autoPlacementCursor.second = 0; } } } void RenderGrid::placeAutoMajorAxisItemOnGrid(Grid& grid, RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor) const { ASSERT(grid.gridItemSpan(gridItem, autoPlacementMajorAxisDirection()).isIndefinite()); unsigned majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(gridItem, autoPlacementMajorAxisDirection()); const unsigned endOfMajorAxis = grid.numTracks(autoPlacementMajorAxisDirection()); unsigned majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first; unsigned minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second; std::unique_ptr emptyGridArea; GridSpan minorAxisPositions = grid.gridItemSpan(gridItem, autoPlacementMinorAxisDirection()); if (minorAxisPositions.isTranslatedDefinite()) { // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor. if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor) majorAxisAutoPlacementCursor++; if (majorAxisAutoPlacementCursor < endOfMajorAxis) { GridIterator iterator(grid, autoPlacementMinorAxisDirection(), minorAxisPositions.startLine(), majorAxisAutoPlacementCursor); emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisSpanSize); } if (!emptyGridArea) emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions); } else { unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(gridItem, autoPlacementMinorAxisDirection()); for (unsigned majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) { GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor); emptyGridArea = iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize); if (emptyGridArea) { // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()). unsigned minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.endLine() : emptyGridArea->rows.endLine(); const unsigned endOfMinorAxis = grid.numTracks(autoPlacementMinorAxisDirection()); if (minorAxisFinalPositionIndex <= endOfMinorAxis) break; // Discard empty grid area as it does not fit in the minor axis direction. // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration. emptyGridArea = nullptr; } // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis. minorAxisAutoPlacementCursor = 0; } if (!emptyGridArea) emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize)); } grid.insert(gridItem, *emptyGridArea); autoPlacementCursor.first = emptyGridArea->rows.startLine(); autoPlacementCursor.second = emptyGridArea->columns.startLine(); } GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const { return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows; } GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const { return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns; } void RenderGrid::dirtyGrid() { if (m_grid.needsItemsPlacement()) return; m_grid.setNeedsItemsPlacement(true); } Vector RenderGrid::trackSizesForComputedStyle(GridTrackSizingDirection direction) const { bool isRowAxis = direction == ForColumns; auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; size_t numPositions = positions.size(); LayoutUnit offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns.distributionOffset : m_offsetBetweenRows.distributionOffset; Vector tracks; if (numPositions < 2) return tracks; ASSERT(!m_grid.needsItemsPlacement()); bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : 0_lu; tracks.reserveCapacity(numPositions - 1); for (size_t i = 0; i < numPositions - 2; ++i) tracks.append(positions[i + 1] - positions[i] - offsetBetweenTracks - gap); tracks.append(positions[numPositions - 1] - positions[numPositions - 2]); if (!hasCollapsedTracks) return tracks; size_t remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size(); size_t lastLine = tracks.size(); gap = gridGap(direction); for (size_t i = 1; i < lastLine; ++i) { if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) --remainingEmptyTracks; else { // Remove the gap between consecutive non empty tracks. Remove it also just once for an // arbitrary number of empty tracks between two non empty ones. bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) tracks[i - 1] -= gap; } } return tracks; } static const StyleContentAlignmentData& contentAlignmentNormalBehaviorGrid() { static const StyleContentAlignmentData normalBehavior = {ContentPosition::Normal, ContentDistribution::Stretch}; return normalBehavior; } static bool overrideSizeChanged(const RenderBox& child, GridTrackSizingDirection direction, std::optional width, std::optional height) { if (direction == ForColumns) return !child.hasOverridingContainingBlockContentLogicalWidth() || child.overridingContainingBlockContentLogicalWidth() != width; return !child.hasOverridingContainingBlockContentLogicalHeight() || child.overridingContainingBlockContentLogicalHeight() != height; } static bool hasRelativeBlockAxisSize(const RenderGrid& grid, const RenderBox& child) { return GridLayoutFunctions::isOrthogonalChild(grid, child) ? child.hasRelativeLogicalWidth() || child.style().logicalWidth().isAuto() : child.hasRelativeLogicalHeight(); } void RenderGrid::updateGridAreaLogicalSize(RenderBox& child, std::optional width, std::optional height) const { // Because the grid area cannot be styled, we don't need to adjust // the grid breadth to account for 'box-sizing'. bool gridAreaWidthChanged = overrideSizeChanged(child, ForColumns, width, height); bool gridAreaHeightChanged = overrideSizeChanged(child, ForRows, width, height); if (gridAreaWidthChanged || (gridAreaHeightChanged && hasRelativeBlockAxisSize(*this, child))) child.setNeedsLayout(MarkOnlyThis); child.setOverridingContainingBlockContentLogicalWidth(width); child.setOverridingContainingBlockContentLogicalHeight(height); } void RenderGrid::layoutGridItems() { populateGridPositionsForDirection(ForColumns); populateGridPositionsForDirection(ForRows); for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (m_grid.orderIterator().shouldSkipChild(*child)) { if (child->isOutOfFlowPositioned()) prepareChildForPositionedLayout(*child); continue; } // Setting the definite grid area's sizes. It may imply that the // item must perform a layout if its area differs from the one // used during the track sizing algorithm. updateGridAreaLogicalSize(*child, gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns), gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows)); LayoutRect oldChildRect = child->frameRect(); // Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded // call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly // determine the available space before stretching, are not set yet. applyStretchAlignmentToChildIfNeeded(*child); child->layoutIfNeeded(); // We need pending layouts to be done in order to compute auto-margins properly. updateAutoMarginsInColumnAxisIfNeeded(*child); updateAutoMarginsInRowAxisIfNeeded(*child); setLogicalPositionForChild(*child); // If the child moved, we have to repaint it as well as any floating/positioned // descendants. An exception is if we need a layout. In this case, we know we're going to // repaint ourselves (and the child) anyway. if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) child->repaintDuringLayoutIfMoved(oldChildRect); } } void RenderGrid::prepareChildForPositionedLayout(RenderBox& child) { ASSERT(child.isOutOfFlowPositioned()); child.containingBlock()->insertPositionedObject(child); RenderLayer* childLayer = child.layer(); // Static position of a positioned child should use the content-box (https://drafts.csswg.org/css-grid/#static-position). childLayer->setStaticInlinePosition(borderAndPaddingStart()); childLayer->setStaticBlockPosition(borderAndPaddingBefore()); } bool RenderGrid::hasStaticPositionForChild(const RenderBox& child, GridTrackSizingDirection direction) const { return direction == ForColumns ? child.style().hasStaticInlinePosition(isHorizontalWritingMode()) : child.style().hasStaticBlockPosition(isHorizontalWritingMode()); } void RenderGrid::layoutPositionedObject(RenderBox& child, bool relayoutChildren, bool fixedPositionObjectsOnly) { LayoutUnit columnBreadth = gridAreaBreadthForOutOfFlowChild(child, ForColumns); LayoutUnit rowBreadth = gridAreaBreadthForOutOfFlowChild(child, ForRows); child.setOverridingContainingBlockContentLogicalWidth(columnBreadth); child.setOverridingContainingBlockContentLogicalHeight(rowBreadth); // Mark for layout as we're resetting the position before and we relay in generic layout logic // for positioned items in order to get the offsets properly resolved. child.setChildNeedsLayout(MarkOnlyThis); RenderBlock::layoutPositionedObject(child, relayoutChildren, fixedPositionObjectsOnly); setLogicalOffsetForChild(child, ForColumns); setLogicalOffsetForChild(child, ForRows); } LayoutUnit RenderGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(const RenderBox& child, GridTrackSizingDirection direction) const { // We need the cached value when available because Content Distribution alignment properties // may have some influence in the final grid area breadth. const auto& tracks = m_trackSizingAlgorithm.tracks(direction); const auto& span = m_grid.gridItemSpan(child, direction); const auto& linePositions = (direction == ForColumns) ? m_columnPositions : m_rowPositions; LayoutUnit initialTrackPosition = linePositions[span.startLine()]; LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1]; // Track Positions vector stores the 'start' grid line of each track, so we have to add last track's baseSize. return finalTrackPosition - initialTrackPosition + tracks[span.endLine() - 1].baseSize(); } void RenderGrid::populateGridPositionsForDirection(GridTrackSizingDirection direction) { // Since we add alignment offsets and track gutters, grid lines are not always adjacent. Hence we will have to // assume from now on that we just store positions of the initial grid lines of each track, // except the last one, which is the only one considered as a final grid line of a track. // The grid container's frame elements (border, padding and offset) are sensible to the // inline-axis flow direction. However, column lines positions are 'direction' unaware. This simplification // allows us to use the same indexes to identify the columns independently on the inline-axis direction. bool isRowAxis = direction == ForColumns; auto& tracks = m_trackSizingAlgorithm.tracks(direction); unsigned numberOfTracks = tracks.size(); unsigned numberOfLines = numberOfTracks + 1; unsigned lastLine = numberOfLines - 1; bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); size_t numberOfCollapsedTracks = hasCollapsedTracks ? m_grid.autoRepeatEmptyTracks(direction)->size() : 0; const auto& offset = direction == ForColumns ? m_offsetBetweenColumns : m_offsetBetweenRows; auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; positions.resize(numberOfLines); auto borderAndPadding = isRowAxis ? borderAndPaddingLogicalLeft() : borderAndPaddingBefore(); #if !PLATFORM(IOS_FAMILY) // FIXME: Ideally scrollbarLogicalWidth() should return zero in iOS so we don't need this // (see bug https://webkit.org/b/191857). // If we are in horizontal writing mode and RTL direction the scrollbar is painted on the left, // so we need to take into account when computing the position of the columns. if (isRowAxis && style().isHorizontalWritingMode() && !style().isLeftToRightDirection()) borderAndPadding += scrollbarLogicalWidth(); #endif positions[0] = borderAndPadding + offset.positionOffset; if (numberOfLines > 1) { // If we have collapsed tracks we just ignore gaps here and add them later as we might not // compute the gap between two consecutive tracks without examining the surrounding ones. LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : 0_lu; unsigned nextToLastLine = numberOfLines - 2; for (unsigned i = 0; i < nextToLastLine; ++i) positions[i + 1] = positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap; positions[lastLine] = positions[nextToLastLine] + tracks[nextToLastLine].baseSize(); // Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to collapse (they // coincide exactly) except on the edges of the grid where they become 0. if (hasCollapsedTracks) { gap = gridGap(direction); unsigned remainingEmptyTracks = numberOfCollapsedTracks; LayoutUnit offsetAccumulator; LayoutUnit gapAccumulator; for (unsigned i = 1; i < lastLine; ++i) { if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) { --remainingEmptyTracks; offsetAccumulator += offset.distributionOffset; } else { // Add gap between consecutive non empty tracks. Add it also just once for an // arbitrary number of empty tracks between two non empty ones. bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) gapAccumulator += gap; } positions[i] += gapAccumulator - offsetAccumulator; } positions[lastLine] += gapAccumulator - offsetAccumulator; } } } static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackSize, LayoutUnit childSize) { LayoutUnit offset = trackSize - childSize; switch (overflow) { case OverflowAlignment::Safe: // If overflow is 'safe', we have to make sure we don't overflow the 'start' // edge (potentially cause some data loss as the overflow is unreachable). return std::max(0, offset); case OverflowAlignment::Unsafe: case OverflowAlignment::Default: // If we overflow our alignment container and overflow is 'true' (default), we // ignore the overflow and just return the value regardless (which may cause data // loss as we overflow the 'start' edge). return offset; } ASSERT_NOT_REACHED(); return 0; } LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const { // Because we want to avoid multiple layouts, stretching logic might be performed before // children are laid out, so we can't use the child cached values. Hence, we need to // compute margins in order to determine the available height before stretching. GridTrackSizingDirection childBlockFlowDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows); return std::max(0_lu, gridAreaBreadthForChild - GridLayoutFunctions::marginLogicalSizeForChild(*this, childBlockFlowDirection, child)); } StyleSelfAlignmentData RenderGrid::alignSelfForChild(const RenderBox& child, StretchingMode stretchingMode, const RenderStyle* gridStyle) const { if (!gridStyle) gridStyle = &style(); auto normalBehavior = stretchingMode == StretchingMode::Any ? selfAlignmentNormalBehavior(&child) : ItemPosition::Normal; return child.style().resolvedAlignSelf(gridStyle, normalBehavior); } StyleSelfAlignmentData RenderGrid::justifySelfForChild(const RenderBox& child, StretchingMode stretchingMode, const RenderStyle* gridStyle) const { if (!gridStyle) gridStyle = &style(); auto normalBehavior = stretchingMode == StretchingMode::Any ? selfAlignmentNormalBehavior(&child) : ItemPosition::Normal; return child.style().resolvedJustifySelf(gridStyle, normalBehavior); } bool RenderGrid::aspectRatioPrefersInline(const RenderBox& child, bool blockFlowIsColumnAxis) { if (!child.style().hasAspectRatio()) return false; bool hasExplicitInlineStretch = justifySelfForChild(child, StretchingMode::Explicit).position() == ItemPosition::Stretch; bool hasExplicitBlockStretch = alignSelfForChild(child, StretchingMode::Explicit).position() == ItemPosition::Stretch; if (!blockFlowIsColumnAxis) std::swap(hasExplicitInlineStretch, hasExplicitBlockStretch); return !hasExplicitBlockStretch; } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child) { ASSERT(child.overridingContainingBlockContentLogicalHeight()); ASSERT(child.overridingContainingBlockContentLogicalWidth()); // We clear height and width override values because we will decide now whether it's allowed or // not, evaluating the conditions which might have changed since the old values were set. child.clearOverridingLogicalHeight(); child.clearOverridingLogicalWidth(); GridTrackSizingDirection childBlockDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows); GridTrackSizingDirection childInlineDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForColumns); bool blockFlowIsColumnAxis = childBlockDirection == ForRows; bool allowedToStretchChildBlockSize = blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child) : allowedToStretchChildAlongRowAxis(child); if (allowedToStretchChildBlockSize && !aspectRatioPrefersInline(child, blockFlowIsColumnAxis)) { LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(GridLayoutFunctions::overridingContainingBlockContentSizeForChild(child, childBlockDirection).value(), child); LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, std::nullopt); child.setOverridingLogicalHeight(desiredLogicalHeight); // Checking the logical-height of a child isn't enough. Setting an override logical-height // changes the definiteness, resulting in percentages to resolve differently. // // FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905. if (desiredLogicalHeight != child.logicalHeight() || (is(child) && downcast(child).hasPercentHeightDescendants())) { child.setLogicalHeight(0_lu); child.setNeedsLayout(MarkOnlyThis); } } else if (!allowedToStretchChildBlockSize && allowedToStretchChildAlongRowAxis(child)) { LayoutUnit stretchedLogicalWidth = availableAlignmentSpaceForChildBeforeStretching(GridLayoutFunctions::overridingContainingBlockContentSizeForChild(child, childInlineDirection).value(), child); LayoutUnit desiredLogicalWidth = constrainLogicalWidthInFragmentByMinMax(stretchedLogicalWidth, contentWidth(), *this, nullptr); child.setOverridingLogicalWidth(desiredLogicalWidth); if (desiredLogicalWidth != child.logicalWidth()) { child.setLogicalWidth(0_lu); child.setNeedsLayout(MarkOnlyThis); } } } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. bool RenderGrid::hasAutoMarginsInColumnAxis(const RenderBox& child) const { if (isHorizontalWritingMode()) return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. bool RenderGrid::hasAutoMarginsInRowAxis(const RenderBox& child) const { if (isHorizontalWritingMode()) return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. void RenderGrid::updateAutoMarginsInRowAxisIfNeeded(RenderBox& child) { ASSERT(!child.isOutOfFlowPositioned()); const RenderStyle& parentStyle = style(); Length marginStart = child.style().marginStartUsing(&parentStyle); Length marginEnd = child.style().marginEndUsing(&parentStyle); LayoutUnit marginLogicalWidth; // We should only consider computed margins if their specified value isn't // 'auto', since such computed value may come from a previous layout and may // be incorrect now. if (!marginStart.isAuto()) marginLogicalWidth += child.marginStart(); if (!marginEnd.isAuto()) marginLogicalWidth += child.marginEnd(); LayoutUnit availableAlignmentSpace = child.overridingContainingBlockContentLogicalWidth().value() - child.logicalWidth() - marginLogicalWidth; if (availableAlignmentSpace <= 0) return; if (marginStart.isAuto() && marginEnd.isAuto()) { child.setMarginStart(availableAlignmentSpace / 2, &parentStyle); child.setMarginEnd(availableAlignmentSpace / 2, &parentStyle); } else if (marginStart.isAuto()) { child.setMarginStart(availableAlignmentSpace, &parentStyle); } else if (marginEnd.isAuto()) { child.setMarginEnd(availableAlignmentSpace, &parentStyle); } } // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. void RenderGrid::updateAutoMarginsInColumnAxisIfNeeded(RenderBox& child) { ASSERT(!child.isOutOfFlowPositioned()); const RenderStyle& parentStyle = style(); Length marginBefore = child.style().marginBeforeUsing(&parentStyle); Length marginAfter = child.style().marginAfterUsing(&parentStyle); LayoutUnit marginLogicalHeight; // We should only consider computed margins if their specified value isn't // 'auto', since such computed value may come from a previous layout and may // be incorrect now. if (!marginBefore.isAuto()) marginLogicalHeight += child.marginBefore(); if (!marginAfter.isAuto()) marginLogicalHeight += child.marginAfter(); LayoutUnit availableAlignmentSpace = child.overridingContainingBlockContentLogicalHeight().value() - child.logicalHeight() - marginLogicalHeight; if (availableAlignmentSpace <= 0) return; if (marginBefore.isAuto() && marginAfter.isAuto()) { child.setMarginBefore(availableAlignmentSpace / 2, &parentStyle); child.setMarginAfter(availableAlignmentSpace / 2, &parentStyle); } else if (marginBefore.isAuto()) { child.setMarginBefore(availableAlignmentSpace, &parentStyle); } else if (marginAfter.isAuto()) { child.setMarginAfter(availableAlignmentSpace, &parentStyle); } } bool RenderGrid::isBaselineAlignmentForChild(const RenderBox& child) const { return isBaselineAlignmentForChild(child, GridRowAxis) || isBaselineAlignmentForChild(child, GridColumnAxis); } bool RenderGrid::isBaselineAlignmentForChild(const RenderBox& child, GridAxis baselineAxis, AllowedBaseLine allowed) const { if (child.isOutOfFlowPositioned()) return false; ItemPosition align = selfAlignmentForChild(baselineAxis, child).position(); bool hasAutoMargins = baselineAxis == GridColumnAxis ? hasAutoMarginsInColumnAxis(child) : hasAutoMarginsInRowAxis(child); bool isBaseline = allowed == FirstLine ? isFirstBaselinePosition(align) : isBaselinePosition(align); return isBaseline && !hasAutoMargins; } // FIXME: This logic is shared by RenderFlexibleBox, so it might be refactored somehow. LayoutUnit RenderGrid::baselinePosition(FontBaseline, bool, LineDirectionMode direction, LinePositionMode mode) const { ASSERT_UNUSED(mode, mode == PositionOnContainingLine); auto baseline = firstLineBaseline(); if (!baseline) return synthesizedBaselineFromBorderBox(*this, direction) + marginLogicalHeight(); return baseline.value() + (direction == HorizontalLine ? marginTop() : marginRight()).toInt(); } std::optional RenderGrid::firstLineBaseline() const { if (isWritingModeRoot() || !m_grid.hasGridItems() || shouldApplyLayoutContainment(*this)) return std::nullopt; const RenderBox* baselineChild = nullptr; // Finding the first grid item in grid order. unsigned numColumns = m_grid.numTracks(ForColumns); for (size_t column = 0; column < numColumns; column++) { for (auto& child : m_grid.cell(0, column)) { ASSERT(child.get()); // If an item participates in baseline alignment, we select such item. if (isBaselineAlignmentForChild(*child, GridColumnAxis, FirstLine)) { // FIXME: self-baseline and content-baseline alignment not implemented yet. baselineChild = child.get(); break; } if (!baselineChild) baselineChild = child.get(); } } if (!baselineChild) return std::nullopt; auto baseline = GridLayoutFunctions::isOrthogonalChild(*this, *baselineChild) ? std::nullopt : baselineChild->firstLineBaseline(); // We take border-box's bottom if no valid baseline. if (!baseline) { // FIXME: We should pass |direction| into firstLineBaseline and stop bailing out if we're a writing // mode root. This would also fix some cases where the grid is orthogonal to its container. LineDirectionMode direction = isHorizontalWritingMode() ? HorizontalLine : VerticalLine; return synthesizedBaselineFromBorderBox(*baselineChild, direction) + logicalTopForChild(*baselineChild); } return baseline.value() + baselineChild->logicalTop().toInt(); } std::optional RenderGrid::inlineBlockBaseline(LineDirectionMode) const { return firstLineBaseline(); } LayoutUnit RenderGrid::columnAxisBaselineOffsetForChild(const RenderBox& child) const { return m_trackSizingAlgorithm.baselineOffsetForChild(child, GridColumnAxis); } LayoutUnit RenderGrid::rowAxisBaselineOffsetForChild(const RenderBox& child) const { return m_trackSizingAlgorithm.baselineOffsetForChild(child, GridRowAxis); } GridAxisPosition RenderGrid::columnAxisPositionForChild(const RenderBox& child) const { bool hasSameWritingMode = child.style().writingMode() == style().writingMode(); bool childIsLTR = child.style().isLeftToRightDirection(); if (child.isOutOfFlowPositioned() && !hasStaticPositionForChild(child, ForRows)) return GridAxisStart; switch (alignSelfForChild(child).position()) { case ItemPosition::SelfStart: // FIXME: Should we implement this logic in a generic utility function ? // Aligns the alignment subject to be flush with the edge of the alignment container // corresponding to the alignment subject's 'start' side in the column axis. if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { // If orthogonal writing-modes, self-start will be based on the child's inline-axis // direction (inline-start), because it's the one parallel to the column axis. if (style().isFlippedBlocksWritingMode()) return childIsLTR ? GridAxisEnd : GridAxisStart; return childIsLTR ? GridAxisStart : GridAxisEnd; } // self-start is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. return hasSameWritingMode ? GridAxisStart : GridAxisEnd; case ItemPosition::SelfEnd: // FIXME: Should we implement this logic in a generic utility function ? // Aligns the alignment subject to be flush with the edge of the alignment container // corresponding to the alignment subject's 'end' side in the column axis. if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { // If orthogonal writing-modes, self-end will be based on the child's inline-axis // direction, (inline-end) because it's the one parallel to the column axis. if (style().isFlippedBlocksWritingMode()) return childIsLTR ? GridAxisStart : GridAxisEnd; return childIsLTR ? GridAxisEnd : GridAxisStart; } // self-end is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. return hasSameWritingMode ? GridAxisEnd : GridAxisStart; case ItemPosition::Left: // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. return GridAxisStart; case ItemPosition::Right: // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. return GridAxisStart; case ItemPosition::Center: return GridAxisCenter; case ItemPosition::FlexStart: // Only used in flex layout, otherwise equivalent to 'start'. // Aligns the alignment subject to be flush with the alignment container's 'start' edge (block-start) in the column axis. case ItemPosition::Start: return GridAxisStart; case ItemPosition::FlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. // Aligns the alignment subject to be flush with the alignment container's 'end' edge (block-end) in the column axis. case ItemPosition::End: return GridAxisEnd; case ItemPosition::Stretch: return GridAxisStart; case ItemPosition::Baseline: case ItemPosition::LastBaseline: // FIXME: Implement the previous values. For now, we always 'start' align the child. return GridAxisStart; case ItemPosition::Legacy: case ItemPosition::Auto: case ItemPosition::Normal: break; } ASSERT_NOT_REACHED(); return GridAxisStart; } GridAxisPosition RenderGrid::rowAxisPositionForChild(const RenderBox& child) const { bool hasSameDirection = child.style().direction() == style().direction(); bool gridIsLTR = style().isLeftToRightDirection(); if (child.isOutOfFlowPositioned() && !hasStaticPositionForChild(child, ForColumns)) return GridAxisStart; switch (justifySelfForChild(child).position()) { case ItemPosition::SelfStart: // FIXME: Should we implement this logic in a generic utility function ? // Aligns the alignment subject to be flush with the edge of the alignment container // corresponding to the alignment subject's 'start' side in the row axis. if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { // If orthogonal writing-modes, self-start will be based on the child's block-axis // direction, because it's the one parallel to the row axis. if (child.style().isFlippedBlocksWritingMode()) return gridIsLTR ? GridAxisEnd : GridAxisStart; return gridIsLTR ? GridAxisStart : GridAxisEnd; } // self-start is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. return hasSameDirection ? GridAxisStart : GridAxisEnd; case ItemPosition::SelfEnd: // FIXME: Should we implement this logic in a generic utility function ? // Aligns the alignment subject to be flush with the edge of the alignment container // corresponding to the alignment subject's 'end' side in the row axis. if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { // If orthogonal writing-modes, self-end will be based on the child's block-axis // direction, because it's the one parallel to the row axis. if (child.style().isFlippedBlocksWritingMode()) return gridIsLTR ? GridAxisStart : GridAxisEnd; return gridIsLTR ? GridAxisEnd : GridAxisStart; } // self-end is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. return hasSameDirection ? GridAxisEnd : GridAxisStart; case ItemPosition::Left: // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. // We want the physical 'left' side, so we have to take account, container's inline-flow direction. return gridIsLTR ? GridAxisStart : GridAxisEnd; case ItemPosition::Right: // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. // We want the physical 'right' side, so we have to take account, container's inline-flow direction. return gridIsLTR ? GridAxisEnd : GridAxisStart; case ItemPosition::Center: return GridAxisCenter; case ItemPosition::FlexStart: // Only used in flex layout, otherwise equivalent to 'start'. // Aligns the alignment subject to be flush with the alignment container's 'start' edge (inline-start) in the row axis. case ItemPosition::Start: return GridAxisStart; case ItemPosition::FlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. // Aligns the alignment subject to be flush with the alignment container's 'end' edge (inline-end) in the row axis. case ItemPosition::End: return GridAxisEnd; case ItemPosition::Stretch: return GridAxisStart; case ItemPosition::Baseline: case ItemPosition::LastBaseline: // FIXME: Implement the previous values. For now, we always 'start' align the child. return GridAxisStart; case ItemPosition::Legacy: case ItemPosition::Auto: case ItemPosition::Normal: break; } ASSERT_NOT_REACHED(); return GridAxisStart; } LayoutUnit RenderGrid::columnAxisOffsetForChild(const RenderBox& child) const { LayoutUnit startOfRow; LayoutUnit endOfRow; gridAreaPositionForChild(child, ForRows, startOfRow, endOfRow); LayoutUnit startPosition = startOfRow + marginBeforeForChild(child); if (hasAutoMarginsInColumnAxis(child)) return startPosition; GridAxisPosition axisPosition = columnAxisPositionForChild(child); switch (axisPosition) { case GridAxisStart: return startPosition + columnAxisBaselineOffsetForChild(child); case GridAxisEnd: case GridAxisCenter: { LayoutUnit columnAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); auto overflow = alignSelfForChild(child).overflow(); LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfRow - startOfRow, columnAxisChildSize); return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); } } ASSERT_NOT_REACHED(); return 0; } LayoutUnit RenderGrid::rowAxisOffsetForChild(const RenderBox& child) const { LayoutUnit startOfColumn; LayoutUnit endOfColumn; gridAreaPositionForChild(child, ForColumns, startOfColumn, endOfColumn); LayoutUnit startPosition = startOfColumn + marginStartForChild(child); if (hasAutoMarginsInRowAxis(child)) return startPosition; GridAxisPosition axisPosition = rowAxisPositionForChild(child); switch (axisPosition) { case GridAxisStart: return startPosition + rowAxisBaselineOffsetForChild(child); case GridAxisEnd: case GridAxisCenter: { LayoutUnit rowAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalHeight() + child.marginLogicalHeight() : child.logicalWidth() + child.marginLogicalWidth(); auto overflow = justifySelfForChild(child).overflow(); LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfColumn - startOfColumn, rowAxisChildSize); return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); } } ASSERT_NOT_REACHED(); return 0; } LayoutUnit RenderGrid::resolveAutoStartGridPosition(GridTrackSizingDirection direction) const { if (direction == ForRows || style().isLeftToRightDirection()) return 0_lu; int lastLine = numTracks(ForColumns, m_grid); ContentPosition position = style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid()); if (position == ContentPosition::End) return m_columnPositions[lastLine] - clientLogicalWidth(); if (position == ContentPosition::Start || style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) == ContentDistribution::Stretch) return m_columnPositions[0] - borderAndPaddingLogicalLeft(); return 0_lu; } LayoutUnit RenderGrid::resolveAutoEndGridPosition(GridTrackSizingDirection direction) const { if (direction == ForRows) return clientLogicalHeight(); if (style().isLeftToRightDirection()) return clientLogicalWidth(); int lastLine = numTracks(ForColumns, m_grid); ContentPosition position = style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid()); if (position == ContentPosition::End) return m_columnPositions[lastLine]; if (position == ContentPosition::Start || style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) == ContentDistribution::Stretch) return m_columnPositions[0] - borderAndPaddingLogicalLeft() + clientLogicalWidth(); return clientLogicalWidth(); } LayoutUnit RenderGrid::gridAreaBreadthForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction) { ASSERT(child.isOutOfFlowPositioned()); bool isRowAxis = direction == ForColumns; GridSpan span = GridPositionsResolver::resolveGridPositionsFromStyle(style(), child, direction, autoRepeatCountForDirection(direction)); if (span.isIndefinite()) return isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); unsigned explicitStart = m_grid.explicitGridStart(direction); int startLine = span.untranslatedStartLine() + explicitStart; int endLine = span.untranslatedEndLine() + explicitStart; int lastLine = numTracks(direction, m_grid); GridPosition startPosition = direction == ForColumns ? child.style().gridItemColumnStart() : child.style().gridItemRowStart(); GridPosition endPosition = direction == ForColumns ? child.style().gridItemColumnEnd() : child.style().gridItemRowEnd(); bool startIsAuto = startPosition.isAuto() || startLine < 0 || startLine > lastLine; bool endIsAuto = endPosition.isAuto() || endLine < 0 || endLine > lastLine; if (startIsAuto && endIsAuto) return isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); LayoutUnit start; LayoutUnit end; auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow; LayoutUnit borderEdge = isRowAxis ? borderLogicalLeft() : borderBefore(); if (startIsAuto) start = resolveAutoStartGridPosition(direction) + borderEdge; else { outOfFlowItemLine.set(&child, startLine); start = positions[startLine]; } if (endIsAuto) end = resolveAutoEndGridPosition(direction) + borderEdge; else { end = positions[endLine]; // These vectors store line positions including gaps, but we shouldn't consider them for the edges of the grid. std::optional availableSizeForGutters = availableSpaceForGutters(direction); if (endLine > 0 && endLine < lastLine) { ASSERT(!m_grid.needsItemsPlacement()); end -= guttersSize(m_grid, direction, endLine - 1, 2, availableSizeForGutters); end -= isRowAxis ? m_offsetBetweenColumns.distributionOffset : m_offsetBetweenRows.distributionOffset; } } return std::max(end - start, 0_lu); } LayoutUnit RenderGrid::logicalOffsetForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit trackBreadth) const { ASSERT(child.isOutOfFlowPositioned()); if (hasStaticPositionForChild(child, direction)) return 0_lu; bool isRowAxis = direction == ForColumns; bool isFlowAwareRowAxis = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, direction) == ForColumns; LayoutUnit childPosition = isFlowAwareRowAxis ? child.logicalLeft() : child.logicalTop(); LayoutUnit gridBorder = isRowAxis ? borderLogicalLeft() : borderBefore(); LayoutUnit childMargin = isRowAxis ? child.marginLogicalLeft(&style()) : child.marginBefore(&style()); LayoutUnit offset = childPosition - gridBorder - childMargin; if (!isRowAxis || style().isLeftToRightDirection()) return offset; LayoutUnit childBreadth = isFlowAwareRowAxis ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); return trackBreadth - offset - childBreadth; } void RenderGrid::gridAreaPositionForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const { ASSERT(child.isOutOfFlowPositioned()); ASSERT(GridLayoutFunctions::hasOverridingContainingBlockContentSizeForChild(child, direction)); LayoutUnit trackBreadth = GridLayoutFunctions::overridingContainingBlockContentSizeForChild(child, direction).value(); bool isRowAxis = direction == ForColumns; auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow; start = isRowAxis ? borderLogicalLeft() : borderBefore(); if (auto line = outOfFlowItemLine.get(&child)) { auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; start = positions[line.value()]; } start += logicalOffsetForOutOfFlowChild(child, direction, trackBreadth); end = start + trackBreadth; } void RenderGrid::gridAreaPositionForInFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const { ASSERT(!child.isOutOfFlowPositioned()); const GridSpan& span = m_grid.gridItemSpan(child, direction); // FIXME (lajava): This is a common pattern, why not defining a function like // positions(direction) ? auto& positions = direction == ForColumns ? m_columnPositions : m_rowPositions; start = positions[span.startLine()]; end = positions[span.endLine()]; // The 'positions' vector includes distribution offset (because of content // alignment) and gutters so we need to subtract them to get the actual // end position for a given track (this does not have to be done for the // last track as there are no more positions's elements after it, nor for // collapsed tracks). if (span.endLine() < positions.size() - 1 && !(m_grid.hasAutoRepeatEmptyTracks(direction) && m_grid.isEmptyAutoRepeatTrack(direction, span.endLine()))) { end -= gridGap(direction) + gridItemOffset(direction); } } void RenderGrid::gridAreaPositionForChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const { if (child.isOutOfFlowPositioned()) gridAreaPositionForOutOfFlowChild(child, direction, start, end); else gridAreaPositionForInFlowChild(child, direction, start, end); } ContentPosition static resolveContentDistributionFallback(ContentDistribution distribution) { switch (distribution) { case ContentDistribution::SpaceBetween: return ContentPosition::Start; case ContentDistribution::SpaceAround: return ContentPosition::Center; case ContentDistribution::SpaceEvenly: return ContentPosition::Center; case ContentDistribution::Stretch: return ContentPosition::Start; case ContentDistribution::Default: return ContentPosition::Normal; } ASSERT_NOT_REACHED(); return ContentPosition::Normal; } static void contentDistributionOffset(ContentAlignmentData& offset, const LayoutUnit& availableFreeSpace, ContentPosition& fallbackPosition, ContentDistribution distribution, unsigned numberOfGridTracks) { if (distribution != ContentDistribution::Default && fallbackPosition == ContentPosition::Normal) fallbackPosition = resolveContentDistributionFallback(distribution); // Initialize to an invalid offset. offset.positionOffset = -1_lu; offset.distributionOffset = -1_lu; if (availableFreeSpace <= 0) return; LayoutUnit positionOffset; LayoutUnit distributionOffset; switch (distribution) { case ContentDistribution::SpaceBetween: if (numberOfGridTracks < 2) return; distributionOffset = availableFreeSpace / (numberOfGridTracks - 1); positionOffset = 0_lu; break; case ContentDistribution::SpaceAround: if (numberOfGridTracks < 1) return; distributionOffset = availableFreeSpace / numberOfGridTracks; positionOffset = distributionOffset / 2; break; case ContentDistribution::SpaceEvenly: distributionOffset = availableFreeSpace / (numberOfGridTracks + 1); positionOffset = distributionOffset; break; case ContentDistribution::Stretch: case ContentDistribution::Default: return; default: ASSERT_NOT_REACHED(); return; } offset.positionOffset = positionOffset; offset.distributionOffset = distributionOffset; } StyleContentAlignmentData RenderGrid::contentAlignment(GridTrackSizingDirection direction) const { return direction == ForColumns ? style().resolvedJustifyContent(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContent(contentAlignmentNormalBehaviorGrid()); } void RenderGrid::computeContentPositionAndDistributionOffset(GridTrackSizingDirection direction, const LayoutUnit& availableFreeSpace, unsigned numberOfGridTracks) { bool isRowAxis = direction == ForColumns; auto& offset = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; auto contentAlignmentData = contentAlignment(direction); auto position = contentAlignmentData.position(); // If value can't be applied, 'position' will become the associated // fallback value. contentDistributionOffset(offset, availableFreeSpace, position, contentAlignmentData.distribution(), numberOfGridTracks); if (offset.isValid()) return; if (availableFreeSpace <= 0 && contentAlignmentData.overflow() == OverflowAlignment::Safe) { offset.positionOffset = 0_lu; offset.distributionOffset = 0_lu; return; } LayoutUnit positionOffset; switch (position) { case ContentPosition::Left: ASSERT(isRowAxis); break; case ContentPosition::Right: ASSERT(isRowAxis); positionOffset = availableFreeSpace; break; case ContentPosition::Center: positionOffset = availableFreeSpace / 2; break; case ContentPosition::FlexEnd: // Only used in flex layout, for other layout, it's equivalent to 'end'. case ContentPosition::End: if (isRowAxis) positionOffset = style().isLeftToRightDirection() ? availableFreeSpace : 0_lu; else positionOffset = availableFreeSpace; break; case ContentPosition::FlexStart: // Only used in flex layout, for other layout, it's equivalent to 'start'. case ContentPosition::Start: if (isRowAxis) positionOffset = style().isLeftToRightDirection() ? 0_lu : availableFreeSpace; break; case ContentPosition::Baseline: case ContentPosition::LastBaseline: // FIXME: Implement the previous values. For now, we always 'start' align. // http://webkit.org/b/145566 if (isRowAxis) positionOffset = style().isLeftToRightDirection() ? 0_lu : availableFreeSpace; break; case ContentPosition::Normal: default: ASSERT_NOT_REACHED(); return; } offset.positionOffset = positionOffset; offset.distributionOffset = 0_lu; } LayoutUnit RenderGrid::translateOutOfFlowRTLCoordinate(const RenderBox& child, LayoutUnit coordinate) const { ASSERT(child.isOutOfFlowPositioned()); ASSERT(!style().isLeftToRightDirection()); if (m_outOfFlowItemColumn.get(&child)) return translateRTLCoordinate(coordinate); return borderLogicalLeft() + borderLogicalRight() + clientLogicalWidth() - coordinate; } LayoutUnit RenderGrid::translateRTLCoordinate(LayoutUnit coordinate) const { ASSERT(!style().isLeftToRightDirection()); LayoutUnit alignmentOffset = m_columnPositions[0]; LayoutUnit rightGridEdgePosition = m_columnPositions[m_columnPositions.size() - 1]; return rightGridEdgePosition + alignmentOffset - coordinate; } // FIXME: SetLogicalPositionForChild has only one caller, consider its refactoring in the future. void RenderGrid::setLogicalPositionForChild(RenderBox& child) const { // "In the positioning phase [...] calculations are performed according to the writing mode of the containing block of the box establishing the // orthogonal flow." However, 'setLogicalLocation' will only take into account the child's writing-mode, so the position may need to be transposed. LayoutPoint childLocation(logicalOffsetForChild(child, ForColumns), logicalOffsetForChild(child, ForRows)); child.setLogicalLocation(GridLayoutFunctions::isOrthogonalChild(*this, child) ? childLocation.transposedPoint() : childLocation); } void RenderGrid::setLogicalOffsetForChild(RenderBox& child, GridTrackSizingDirection direction) const { if (!child.isGridItem() && hasStaticPositionForChild(child, direction)) return; // 'setLogicalLeft' and 'setLogicalTop' only take into account the child's writing-mode, that's why 'flowAwareDirectionForChild' is needed. if (GridLayoutFunctions::flowAwareDirectionForChild(*this, child, direction) == ForColumns) child.setLogicalLeft(logicalOffsetForChild(child, direction)); else child.setLogicalTop(logicalOffsetForChild(child, direction)); } LayoutUnit RenderGrid::logicalOffsetForChild(const RenderBox& child, GridTrackSizingDirection direction) const { if (direction == ForRows) return columnAxisOffsetForChild(child); LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child); // We stored m_columnPositions's data ignoring the direction, hence we might need now // to translate positions from RTL to LTR, as it's more convenient for painting. if (!style().isLeftToRightDirection()) rowAxisOffset = (child.isOutOfFlowPositioned() ? translateOutOfFlowRTLCoordinate(child, rowAxisOffset) : translateRTLCoordinate(rowAxisOffset)) - (GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalHeight() : child.logicalWidth()); return rowAxisOffset; } unsigned RenderGrid::nonCollapsedTracks(GridTrackSizingDirection direction) const { auto& tracks = m_trackSizingAlgorithm.tracks(direction); size_t numberOfTracks = tracks.size(); bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); size_t numberOfCollapsedTracks = hasCollapsedTracks ? m_grid.autoRepeatEmptyTracks(direction)->size() : 0; return numberOfTracks - numberOfCollapsedTracks; } unsigned RenderGrid::numTracks(GridTrackSizingDirection direction, const Grid& grid) const { // Due to limitations in our internal representation, we cannot know the number of columns from // m_grid *if* there is no row (because m_grid would be empty). That's why in that case we need // to get it from the style. Note that we know for sure that there are't any implicit tracks, // because not having rows implies that there are no "normal" children (out-of-flow children are // not stored in m_grid). ASSERT(!grid.needsItemsPlacement()); if (direction == ForRows) return grid.numTracks(ForRows); // FIXME: This still requires knowledge about m_grid internals. return grid.numTracks(ForRows) ? grid.numTracks(ForColumns) : GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns)); } void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect) { ASSERT(!m_grid.needsItemsPlacement()); for (RenderBox* child = m_grid.orderIterator().first(); child; child = m_grid.orderIterator().next()) paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect, PaintAsInlineBlock); } const char* RenderGrid::renderName() const { if (isFloating()) return "RenderGrid (floating)"; if (isOutOfFlowPositioned()) return "RenderGrid (positioned)"; if (isAnonymous()) return "RenderGrid (generated)"; if (isRelativelyPositioned()) return "RenderGrid (relative positioned)"; return "RenderGrid"; } bool RenderGrid::hasAutoSizeInColumnAxis(const RenderBox& child) const { if (child.style().hasAspectRatio()) { // FIXME: should align-items + align-self: auto/justify-items + justify-self: auto be taken into account? if (isHorizontalWritingMode() == child.isHorizontalWritingMode() && child.style().alignSelf().position() != ItemPosition::Stretch) { // A non-auto inline size means the same for block size (column axis size) because of the aspect ratio. if (!child.style().logicalWidth().isAuto()) return false; } else if (child.style().justifySelf().position() != ItemPosition::Stretch) { const Length& logicalHeight = child.style().logicalHeight(); if (logicalHeight.isFixed() || (logicalHeight.isPercentOrCalculated() && child.percentageLogicalHeightIsResolvable())) return false; } } return isHorizontalWritingMode() ? child.style().height().isAuto() : child.style().width().isAuto(); } bool RenderGrid::hasAutoSizeInRowAxis(const RenderBox& child) const { if (child.style().hasAspectRatio()) { // FIXME: should align-items + align-self: auto/justify-items + justify-self: auto be taken into account? if (isHorizontalWritingMode() == child.isHorizontalWritingMode() && child.style().justifySelf().position() != ItemPosition::Stretch) { // A non-auto block size means the same for inline size (row axis size) because of the aspect ratio. const Length& logicalHeight = child.style().logicalHeight(); if (logicalHeight.isFixed() || (logicalHeight.isPercentOrCalculated() && child.percentageLogicalHeightIsResolvable())) return false; } else if (child.style().alignSelf().position() != ItemPosition::Stretch) { if (!child.style().logicalWidth().isAuto()) return false; } } return isHorizontalWritingMode() ? child.style().width().isAuto() : child.style().height().isAuto(); } } // namespace WebCore