/* * Copyright (C) 2016 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "ScrollingMomentumCalculator.h" #include "FloatPoint.h" #include "FloatSize.h" namespace WebCore { static const Seconds scrollSnapAnimationDuration = 1_s; static inline float projectedInertialScrollDistance(float initialWheelDelta) { // On macOS 10.10 and earlier, we don't have a platform scrolling momentum calculator, so we instead approximate the scroll destination // by multiplying the initial wheel delta by a constant factor. By running a few experiments (i.e. logging scroll destination and initial // wheel delta for many scroll gestures) we determined that this is a reasonable way to approximate where scrolling will take us without // using _NSScrollingMomentumCalculator. static constexpr double inertialScrollPredictionFactor = 16.7; return inertialScrollPredictionFactor * initialWheelDelta; } ScrollingMomentumCalculator::ScrollingMomentumCalculator(const FloatSize& viewportSize, const FloatSize& contentSize, const FloatPoint& initialOffset, const FloatSize& initialDelta, const FloatSize& initialVelocity) : m_initialDelta(initialDelta) , m_initialVelocity(initialVelocity) , m_initialScrollOffset(initialOffset.x(), initialOffset.y()) , m_viewportSize(viewportSize) , m_contentSize(contentSize) { } void ScrollingMomentumCalculator::setRetargetedScrollOffset(const FloatSize& target) { if (m_retargetedScrollOffset && m_retargetedScrollOffset == target) return; m_retargetedScrollOffset = target; retargetedScrollOffsetDidChange(); } FloatSize ScrollingMomentumCalculator::predictedDestinationOffset() { float initialOffsetX = clampTo(m_initialScrollOffset.width() + projectedInertialScrollDistance(m_initialDelta.width()), 0, m_contentSize.width() - m_viewportSize.width()); float initialOffsetY = clampTo(m_initialScrollOffset.height() + projectedInertialScrollDistance(m_initialDelta.height()), 0, m_contentSize.height() - m_viewportSize.height()); return { initialOffsetX, initialOffsetY }; } #if !PLATFORM(MAC) std::unique_ptr ScrollingMomentumCalculator::create(const FloatSize& viewportSize, const FloatSize& contentSize, const FloatPoint& initialOffset, const FloatSize& initialDelta, const FloatSize& initialVelocity) { return makeUnique(viewportSize, contentSize, initialOffset, initialDelta, initialVelocity); } void ScrollingMomentumCalculator::setPlatformMomentumScrollingPredictionEnabled(bool) { } #endif BasicScrollingMomentumCalculator::BasicScrollingMomentumCalculator(const FloatSize& viewportSize, const FloatSize& contentSize, const FloatPoint& initialOffset, const FloatSize& initialDelta, const FloatSize& initialVelocity) : ScrollingMomentumCalculator(viewportSize, contentSize, initialOffset, initialDelta, initialVelocity) { } FloatSize BasicScrollingMomentumCalculator::linearlyInterpolatedOffsetAtProgress(float progress) { return m_initialScrollOffset + progress * (retargetedScrollOffset() - m_initialScrollOffset); } FloatSize BasicScrollingMomentumCalculator::cubicallyInterpolatedOffsetAtProgress(float progress) const { ASSERT(!m_forceLinearAnimationCurve); FloatSize interpolatedPoint; for (int i = 0; i < 4; ++i) interpolatedPoint += std::pow(progress, i) * m_snapAnimationCurveCoefficients[i]; return interpolatedPoint; } FloatPoint BasicScrollingMomentumCalculator::scrollOffsetAfterElapsedTime(Seconds elapsedTime) { if (m_momentumCalculatorRequiresInitialization) { initializeSnapProgressCurve(); initializeInterpolationCoefficientsIfNecessary(); m_momentumCalculatorRequiresInitialization = false; } float progress = animationProgressAfterElapsedTime(elapsedTime); auto offsetAsSize = m_forceLinearAnimationCurve ? linearlyInterpolatedOffsetAtProgress(progress) : cubicallyInterpolatedOffsetAtProgress(progress); return FloatPoint(offsetAsSize.width(), offsetAsSize.height()); } Seconds BasicScrollingMomentumCalculator::animationDuration() { return scrollSnapAnimationDuration; } /** * Computes and sets coefficients required for interpolated snapping when scrolling in 2 dimensions, given * initial conditions (the initial and target vectors, along with the initial wheel delta as a vector). The * path is a cubic Bezier curve of the form p(s) = INITIAL + (C_1 * s) + (C_2 * s^2) + (C_3 * s^3) where each * C_i is a 2D vector and INITIAL is the vector representing the initial scroll offset. s is a real in the * interval [0, 1] indicating the "progress" of the curve (i.e. how much of the curve has been traveled). * * The curve has 4 control points, the first and last of which are the initial and target points, respectively. * The distances between adjacent control points are constrained to be the same, making the convex hull an * isosceles trapezoid with 3 sides of equal length. Additionally, the vector from the first control point to * the second points in the same direction as the initial scroll delta. These constraints ensure two properties: * 1. The direction of the snap animation at s=0 will be equal to the direction of the initial scroll delta. * 2. Points at regular intervals of s will be evenly spread out. * * If the initial scroll direction is orthogonal to or points in the opposite direction as the vector from the * initial point to the target point, initialization returns early and sets the curve to animate directly to the * snap point without cubic interpolation. * * FIXME: This should be refactored to use UnitBezier. */ void BasicScrollingMomentumCalculator::initializeInterpolationCoefficientsIfNecessary() { m_forceLinearAnimationCurve = true; float initialDeltaMagnitude = m_initialDelta.diagonalLength(); if (initialDeltaMagnitude < 1) { // The initial wheel delta is so insignificant that we're better off considering this to have the same effect as finishing a scroll gesture with no momentum. // Thus, cubic interpolation isn't needed here. return; } FloatSize startToEndVector = retargetedScrollOffset() - m_initialScrollOffset; float startToEndDistance = startToEndVector.diagonalLength(); if (!startToEndDistance) { // The start and end positions are the same, so we shouldn't try to interpolate a path. return; } float cosTheta = (m_initialDelta.width() * startToEndVector.width() + m_initialDelta.height() * startToEndVector.height()) / (initialDeltaMagnitude * startToEndDistance); if (cosTheta <= 0) { // It's possible that the user is not scrolling towards the target snap offset (for instance, scrolling against a corner when 2D scroll snapping). // In this case, just let the scroll offset animate to the target without computing a cubic curve. return; } float sideLength = startToEndDistance / (2.0f * cosTheta + 1.0f); FloatSize controlVector1 = m_initialScrollOffset + sideLength * m_initialDelta / initialDeltaMagnitude; FloatSize controlVector2 = controlVector1 + (sideLength * startToEndVector / startToEndDistance); m_snapAnimationCurveCoefficients[0] = m_initialScrollOffset; m_snapAnimationCurveCoefficients[1] = 3 * (controlVector1 - m_initialScrollOffset); m_snapAnimationCurveCoefficients[2] = 3 * (m_initialScrollOffset - 2 * controlVector1 + controlVector2); m_snapAnimationCurveCoefficients[3] = 3 * (controlVector1 - controlVector2) - m_initialScrollOffset + retargetedScrollOffset(); m_forceLinearAnimationCurve = false; } static const float framesPerSecond = 60.0f; /** * Computes and sets parameters required for tracking the progress of a snap animation curve, interpolated * or linear. The progress curve s(t) maps time t to progress s; both variables are in the interval [0, 1]. * The time input t is 0 when the current time is the start of the animation, t = 0, and 1 when the current * time is at or after the end of the animation, t = m_scrollSnapAnimationDuration. * * In this exponential progress model, s(t) = A - A * b^(-kt), where k = 60T is the number of frames in the * animation (assuming 60 FPS and an animation duration of T) and A, b are reals greater than or equal to 1. * Also note that we are given the initial progress, a value indicating the portion of the curve which our * initial scroll delta takes us. This is important when matching the initial speed of the animation to the * user's initial momentum scrolling speed. Let this initial progress amount equal v_0. I clamp this initial * progress amount to a minimum or maximum value. * * A is referred to as the curve magnitude, while b is referred to as the decay factor. We solve for A and b, * keeping the following constraints in mind: * 1. s(0) = 0 * 2. s(1) = 1 * 3. s(1/k) = v_0 * * First, observe that s(0) = 0 holds for appropriate values of A, b. Solving for the remaining constraints * yields a nonlinear system of two equations. In lieu of a purely analytical solution, an alternating * optimization scheme is used to approximate A and b. This technique converges quickly (within 5 iterations * or so) for appropriate values of v_0. The optimization terminates early when the decay factor changes by * less than a threshold between one iteration and the next. */ void BasicScrollingMomentumCalculator::initializeSnapProgressCurve() { static const int maxNumScrollSnapParameterEstimationIterations = 10; static const float scrollSnapDecayFactorConvergenceThreshold = 0.001; static const float initialScrollSnapCurveMagnitude = 1.1; static const float minScrollSnapInitialProgress = 0.1; static const float maxScrollSnapInitialProgress = 0.5; FloatSize alignmentVector = m_initialDelta * (retargetedScrollOffset() - m_initialScrollOffset); float initialProgress; if (alignmentVector.width() + alignmentVector.height() > 0) initialProgress = clampTo(m_initialDelta.diagonalLength() / (retargetedScrollOffset() - m_initialScrollOffset).diagonalLength(), minScrollSnapInitialProgress, maxScrollSnapInitialProgress); else initialProgress = minScrollSnapInitialProgress; float previousDecayFactor = 1.0f; m_snapAnimationCurveMagnitude = initialScrollSnapCurveMagnitude; for (int i = 0; i < maxNumScrollSnapParameterEstimationIterations; ++i) { m_snapAnimationDecayFactor = m_snapAnimationCurveMagnitude / (m_snapAnimationCurveMagnitude - initialProgress); m_snapAnimationCurveMagnitude = 1.0f / (1.0f - std::pow(m_snapAnimationDecayFactor, -framesPerSecond * scrollSnapAnimationDuration.value())); if (std::abs(m_snapAnimationDecayFactor - previousDecayFactor) < scrollSnapDecayFactorConvergenceThreshold) break; previousDecayFactor = m_snapAnimationDecayFactor; } } float BasicScrollingMomentumCalculator::animationProgressAfterElapsedTime(Seconds elapsedTime) const { float timeProgress = clampTo(elapsedTime / scrollSnapAnimationDuration, 0, 1); return std::min(1.0, m_snapAnimationCurveMagnitude * (1.0 - std::pow(m_snapAnimationDecayFactor, -framesPerSecond * scrollSnapAnimationDuration.value() * timeProgress))); } }; // namespace WebCore