/* * Copyright (C) 2017 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include namespace WTF { // An iterator for ConcurrentVector. It supports only the pre ++ operator template class ConcurrentVector; template class ConcurrentVectorIterator { WTF_MAKE_FAST_ALLOCATED; private: friend class ConcurrentVector; public: typedef ConcurrentVectorIterator Iterator; ~ConcurrentVectorIterator() { } T& operator*() const { return m_vector.at(m_index); } T* operator->() const { return &m_vector.at(m_index); } // Only prefix ++ operator supported Iterator& operator++() { m_index++; return *this; } bool operator==(const Iterator& other) const { return m_index == other.m_index && &m_vector == &other.m_vector; } bool operator!=(const Iterator& other) const { return m_index != other.m_index || &m_vector != &other.m_vector; } ConcurrentVectorIterator& operator=(const ConcurrentVectorIterator& other) { m_vector = other.m_vector; m_index = other.m_index; return *this; } private: ConcurrentVectorIterator(ConcurrentVector& vector, size_t index) : m_vector(vector) , m_index(index) { } ConcurrentVector& m_vector; size_t m_index; }; // ConcurrentVector is like SegmentedVector, but suitable for scenarios where one thread appends // elements and another thread continues to access elements at lower indices. Only one thread can // append at a time, so that activity still needs locking. size() and last() are racy with append(), // in the sense that last() may crash if an append() is running concurrently because size()-1 does yet // have a segment. // // Typical users of ConcurrentVector already have some way of ensuring that by the time someone is // trying to use an index, some synchronization has happened to ensure that this index contains fully // initialized data. Thereafter, the keeper of that index is allowed to use it on this vector without // any locking other than what is needed to protect the integrity of the element at that index. This // works because we guarantee shrinking the vector is impossible and that growing the vector doesn't // delete old vector spines. template class ConcurrentVector final { friend class ConcurrentVectorIterator; WTF_MAKE_NONCOPYABLE(ConcurrentVector); WTF_MAKE_FAST_ALLOCATED; public: typedef ConcurrentVectorIterator Iterator; ConcurrentVector() = default; ~ConcurrentVector() { } // This may return a size that is bigger than the underlying storage, since this does not fence // manipulations of size. So if you access at size()-1, you may crash because this hasn't // allocated storage for that index yet. size_t size() const { return m_size; } bool isEmpty() const { return !size(); } T& at(size_t index) { ASSERT_WITH_SECURITY_IMPLICATION(index < m_size); return segmentFor(index)->entries[subscriptFor(index)]; } const T& at(size_t index) const { return const_cast*>(this)->at(index); } T& operator[](size_t index) { return at(index); } const T& operator[](size_t index) const { return at(index); } T& first() { ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); return at(0); } const T& first() const { ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); return at(0); } // This may crash if run concurrently to append(). If you want to accurately track the size of // this vector, you'll have to do it yourself, with your own fencing. T& last() { ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); return at(size() - 1); } const T& last() const { ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); return at(size() - 1); } T takeLast() { ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); T result = WTFMove(last()); --m_size; return result; } template void append(Args&&... args) { ++m_size; if (!segmentExistsFor(m_size - 1)) allocateSegment(); new (NotNull, &last()) T(std::forward(args)...); } template T& alloc(Args&&... args) { append(std::forward(args)...); return last(); } void removeLast() { last().~T(); --m_size; } void grow(size_t size) { if (size == m_size) return; ASSERT(size > m_size); ensureSegmentsFor(size); size_t oldSize = m_size; m_size = size; for (size_t i = oldSize; i < m_size; ++i) new (NotNull, &at(i)) T(); } Iterator begin() { return Iterator(*this, 0); } Iterator end() { return Iterator(*this, m_size); } private: struct Segment { WTF_MAKE_STRUCT_FAST_ALLOCATED; T entries[SegmentSize]; }; bool segmentExistsFor(size_t index) { return index / SegmentSize < m_numSegments; } Segment* segmentFor(size_t index) { return m_segments[index / SegmentSize].get(); } size_t subscriptFor(size_t index) { return index % SegmentSize; } void ensureSegmentsFor(size_t size) { size_t segmentCount = (m_size + SegmentSize - 1) / SegmentSize; size_t neededSegmentCount = (size + SegmentSize - 1) / SegmentSize; for (size_t i = segmentCount ? segmentCount - 1 : 0; i < neededSegmentCount; ++i) ensureSegment(i); } void ensureSegment(size_t segmentIndex) { ASSERT_WITH_SECURITY_IMPLICATION(segmentIndex <= m_numSegments); if (segmentIndex == m_numSegments) allocateSegment(); } void allocateSegment() { m_segments.grow(m_numSegments + 1); m_segments[m_numSegments++] = makeUnique(); } size_t m_size { 0 }; ConcurrentBuffer> m_segments; size_t m_numSegments { 0 }; }; } // namespace WTF using WTF::ConcurrentVector;