haiku/src/kits/shared/RWLocker.cpp

472 lines
11 KiB
C++

/*
* Copyright 2006, Haiku.
* Distributed under the terms of the MIT License.
*
* Authors:
* IngoWeinhold <bonefish@cs.tu-berlin.de>
*/
#include "RWLocker.h"
#include <String.h>
// info about a read lock owner
struct RWLocker::ReadLockInfo {
thread_id reader;
int32 count;
};
// constructor
RWLocker::RWLocker()
: fLock(),
fMutex(),
fQueue(),
fReaderCount(0),
fWriterCount(0),
fReadLockInfos(8),
fWriter(B_ERROR),
fWriterWriterCount(0),
fWriterReaderCount(0)
{
_Init(NULL);
}
// constructor
RWLocker::RWLocker(const char* name)
: fLock(name),
fMutex(),
fQueue(),
fReaderCount(0),
fWriterCount(0),
fReadLockInfos(8),
fWriter(B_ERROR),
fWriterWriterCount(0),
fWriterReaderCount(0)
{
_Init(name);
}
// destructor
RWLocker::~RWLocker()
{
fLock.Lock();
delete_sem(fMutex.semaphore);
delete_sem(fQueue.semaphore);
for (int32 i = 0; ReadLockInfo* info = _ReadLockInfoAt(i); i++)
delete info;
}
// ReadLock
bool
RWLocker::ReadLock()
{
status_t error = _ReadLock(B_INFINITE_TIMEOUT);
return (error == B_OK);
}
// ReadLockWithTimeout
status_t
RWLocker::ReadLockWithTimeout(bigtime_t timeout)
{
bigtime_t absoluteTimeout = system_time() + timeout;
// take care of overflow
if (timeout > 0 && absoluteTimeout < 0)
absoluteTimeout = B_INFINITE_TIMEOUT;
return _ReadLock(absoluteTimeout);
}
// ReadUnlock
void
RWLocker::ReadUnlock()
{
if (fLock.Lock()) {
thread_id thread = find_thread(NULL);
if (thread == fWriter) {
// We (also) have a write lock.
if (fWriterReaderCount > 0)
fWriterReaderCount--;
// else: error: unmatched ReadUnlock()
} else {
int32 index = _IndexOf(thread);
if (ReadLockInfo* info = _ReadLockInfoAt(index)) {
fReaderCount--;
if (--info->count == 0) {
// The outer read lock bracket for the thread has been
// reached. Dispose the info.
_DeleteReadLockInfo(index);
}
if (fReaderCount == 0) {
// The last reader needs to unlock the mutex.
_ReleaseBenaphore(fMutex);
}
} // else: error: caller has no read lock
}
fLock.Unlock();
} // else: we are probably going to be destroyed
}
// IsReadLocked
//
// Returns whether or not the calling thread owns a read lock or even a
// write lock.
bool
RWLocker::IsReadLocked() const
{
bool result = false;
if (fLock.Lock()) {
thread_id thread = find_thread(NULL);
result = (thread == fWriter || _IndexOf(thread) >= 0);
fLock.Unlock();
}
return result;
}
// WriteLock
bool
RWLocker::WriteLock()
{
status_t error = _WriteLock(B_INFINITE_TIMEOUT);
return (error == B_OK);
}
// WriteLockWithTimeout
status_t
RWLocker::WriteLockWithTimeout(bigtime_t timeout)
{
bigtime_t absoluteTimeout = system_time() + timeout;
// take care of overflow
if (timeout > 0 && absoluteTimeout < 0)
absoluteTimeout = B_INFINITE_TIMEOUT;
return _WriteLock(absoluteTimeout);
}
// WriteUnlock
void
RWLocker::WriteUnlock()
{
if (fLock.Lock()) {
thread_id thread = find_thread(NULL);
if (thread == fWriter) {
fWriterCount--;
if (--fWriterWriterCount == 0) {
// The outer write lock bracket for the thread has been
// reached.
fWriter = B_ERROR;
if (fWriterReaderCount > 0) {
// We still own read locks.
_NewReadLockInfo(thread, fWriterReaderCount);
// A reader that expects to be the first reader may wait
// at the mutex semaphore. We need to wake it up.
if (fReaderCount > 0)
_ReleaseBenaphore(fMutex);
fReaderCount += fWriterReaderCount;
fWriterReaderCount = 0;
} else {
// We don't own any read locks. So we have to release the
// mutex benaphore.
_ReleaseBenaphore(fMutex);
}
}
} // else: error: unmatched WriteUnlock()
fLock.Unlock();
} // else: We're probably going to die.
}
// IsWriteLocked
//
// Returns whether or not the calling thread owns a write lock.
bool
RWLocker::IsWriteLocked() const
{
return (fWriter == find_thread(NULL));
}
// _Init
void
RWLocker::_Init(const char* name)
{
// init the mutex benaphore
BString mutexName(name);
mutexName += "_RWLocker_mutex";
fMutex.semaphore = create_sem(0, mutexName.String());
fMutex.counter = 0;
// init the queueing benaphore
BString queueName(name);
queueName += "_RWLocker_queue";
fQueue.semaphore = create_sem(0, queueName.String());
fQueue.counter = 0;
}
// _ReadLock
//
// /timeout/ -- absolute timeout
status_t
RWLocker::_ReadLock(bigtime_t timeout)
{
status_t error = B_OK;
thread_id thread = find_thread(NULL);
bool locked = false;
if (fLock.Lock()) {
// Check, if we already own a read (or write) lock. In this case we
// can skip the usual locking procedure.
if (thread == fWriter) {
// We already own a write lock.
fWriterReaderCount++;
locked = true;
} else if (ReadLockInfo* info = _ReadLockInfoAt(_IndexOf(thread))) {
// We already own a read lock.
info->count++;
fReaderCount++;
locked = true;
}
fLock.Unlock();
} else // failed to lock the data
error = B_ERROR;
// Usual locking, i.e. we do not already own a read or write lock.
if (error == B_OK && !locked) {
error = _AcquireBenaphore(fQueue, timeout);
if (error == B_OK) {
if (fLock.Lock()) {
bool firstReader = false;
if (++fReaderCount == 1) {
// We are the first reader.
_NewReadLockInfo(thread);
firstReader = true;
} else
_NewReadLockInfo(thread);
fLock.Unlock();
// The first reader needs to lock the mutex.
if (firstReader) {
error = _AcquireBenaphore(fMutex, timeout);
switch (error) {
case B_OK:
// fine
break;
case B_TIMED_OUT: {
// clean up
if (fLock.Lock()) {
_DeleteReadLockInfo(_IndexOf(thread));
fReaderCount--;
fLock.Unlock();
}
break;
}
default:
// Probably we are going to be destroyed.
break;
}
}
// Let the next candidate enter the game.
_ReleaseBenaphore(fQueue);
} else {
// We couldn't lock the data, which can only happen, if
// we're going to be destroyed.
error = B_ERROR;
}
}
}
return error;
}
// _WriteLock
//
// /timeout/ -- absolute timeout
status_t
RWLocker::_WriteLock(bigtime_t timeout)
{
status_t error = B_ERROR;
if (fLock.Lock()) {
bool infiniteTimeout = (timeout == B_INFINITE_TIMEOUT);
bool locked = false;
int32 readerCount = 0;
thread_id thread = find_thread(NULL);
int32 index = _IndexOf(thread);
if (ReadLockInfo* info = _ReadLockInfoAt(index)) {
// We already own a read lock.
if (fWriterCount > 0) {
// There are writers before us.
if (infiniteTimeout) {
// Timeout is infinite and there are writers before us.
// Unregister the read locks and lock as usual.
readerCount = info->count;
fWriterCount++;
fReaderCount -= readerCount;
_DeleteReadLockInfo(index);
error = B_OK;
} else {
// The timeout is finite and there are readers before us:
// let the write lock request fail.
error = B_WOULD_BLOCK;
}
} else if (info->count == fReaderCount) {
// No writers before us.
// We are the only read lock owners. Just move the read lock
// info data to the special writer fields and then we are done.
// Note: At this point we may overtake readers that already
// have acquired the queueing benaphore, but have not yet
// locked the data. But that doesn't harm.
fWriter = thread;
fWriterCount++;
fWriterWriterCount = 1;
fWriterReaderCount = info->count;
fReaderCount -= fWriterReaderCount;
_DeleteReadLockInfo(index);
locked = true;
error = B_OK;
} else {
// No writers before us, but other readers.
// Note, we're quite restrictive here. If there are only
// readers before us, we could reinstall our readers, if
// our request times out. Unfortunately it is not easy
// to ensure, that no writer overtakes us between unlocking
// the data and acquiring the queuing benaphore.
if (infiniteTimeout) {
// Unregister the readers and lock as usual.
readerCount = info->count;
fWriterCount++;
fReaderCount -= readerCount;
_DeleteReadLockInfo(index);
error = B_OK;
} else
error = B_WOULD_BLOCK;
}
} else {
// We don't own a read lock.
if (fWriter == thread) {
// ... but a write lock.
fWriterCount++;
fWriterWriterCount++;
locked = true;
error = B_OK;
} else {
// We own neither read nor write locks.
// Lock as usual.
fWriterCount++;
error = B_OK;
}
}
fLock.Unlock();
// Usual locking...
// First step: acquire the queueing benaphore.
if (!locked && error == B_OK) {
error = _AcquireBenaphore(fQueue, timeout);
switch (error) {
case B_OK:
break;
case B_TIMED_OUT: {
// clean up
if (fLock.Lock()) {
fWriterCount--;
fLock.Unlock();
} // else: failed to lock the data: we're probably going
// to die.
break;
}
default:
// Probably we're going to die.
break;
}
}
// Second step: acquire the mutex benaphore.
if (!locked && error == B_OK) {
error = _AcquireBenaphore(fMutex, timeout);
switch (error) {
case B_OK: {
// Yeah, we made it. Set the special writer fields.
fWriter = thread;
fWriterWriterCount = 1;
fWriterReaderCount = readerCount;
break;
}
case B_TIMED_OUT: {
// clean up
if (fLock.Lock()) {
fWriterCount--;
fLock.Unlock();
} // else: failed to lock the data: we're probably going
// to die.
break;
}
default:
// Probably we're going to die.
break;
}
// Whatever happened, we have to release the queueing benaphore.
_ReleaseBenaphore(fQueue);
}
} else // failed to lock the data
error = B_ERROR;
return error;
}
// _AddReadLockInfo
int32
RWLocker::_AddReadLockInfo(ReadLockInfo* info)
{
int32 index = fReadLockInfos.CountItems();
fReadLockInfos.AddItem(info, index);
return index;
}
// _NewReadLockInfo
//
// Create a new read lock info for the supplied thread and add it to the
// list. Returns the index of the info.
int32
RWLocker::_NewReadLockInfo(thread_id thread, int32 count)
{
ReadLockInfo* info = new ReadLockInfo;
info->reader = thread;
info->count = count;
return _AddReadLockInfo(info);
}
// _DeleteReadLockInfo
void
RWLocker::_DeleteReadLockInfo(int32 index)
{
if (ReadLockInfo* info = (ReadLockInfo*)fReadLockInfos.RemoveItem(index))
delete info;
}
// _ReadLockInfoAt
RWLocker::ReadLockInfo*
RWLocker::_ReadLockInfoAt(int32 index) const
{
return (ReadLockInfo*)fReadLockInfos.ItemAt(index);
}
// _IndexOf
int32
RWLocker::_IndexOf(thread_id thread) const
{
int32 count = fReadLockInfos.CountItems();
for (int32 i = 0; i < count; i++) {
if (_ReadLockInfoAt(i)->reader == thread)
return i;
}
return -1;
}
// _AcquireBenaphore
status_t
RWLocker::_AcquireBenaphore(Benaphore& benaphore, bigtime_t timeout)
{
status_t error = B_OK;
if (atomic_add(&benaphore.counter, 1) > 0) {
error = acquire_sem_etc(benaphore.semaphore, 1, B_ABSOLUTE_TIMEOUT,
timeout);
}
return error;
}
// _ReleaseBenaphore
void
RWLocker::_ReleaseBenaphore(Benaphore& benaphore)
{
if (atomic_add(&benaphore.counter, -1) > 1)
release_sem(benaphore.semaphore);
}