haiku/src/bin/unzip/inflatef.c

1258 lines
38 KiB
C

/*
Copyright (c) 1990-2002 Info-ZIP. All rights reserved.
See the accompanying file LICENSE, version 2000-Apr-09 or later
(the contents of which are also included in unzip.h) for terms of use.
If, for some reason, all these files are missing, the Info-ZIP license
also may be found at: ftp://ftp.info-zip.org/pub/infozip/license.html
*/
/* inflatef.c
*** This is only needed to build funzip correctly and is a direct copy
of inflate.c. Don't forget to update here if you update inflate.c!!
See inflate.c for more information ***
*/
#define PKZIP_BUG_WORKAROUND /* PKZIP 1.93a problem--live with it */
#define FUNZIP
#define __INFLATE_C /* identifies this source module */
/* #define DEBUG */
#define INFMOD /* tell inflate.h to include code to be compiled */
#include "inflate.h"
/* marker for "unused" huft code, and corresponding check macro */
#define INVALID_CODE 99
#define IS_INVALID_CODE(c) ((c) == INVALID_CODE)
#ifndef WSIZE /* default is 32K resp. 64K */
# ifdef USE_DEFLATE64
# define WSIZE 65536L /* window size--must be a power of two, and */
# else /* at least 64K for PKZip's deflate64 method */
# define WSIZE 0x8000 /* window size--must be a power of two, and */
# endif /* at least 32K for zip's deflate method */
#endif
/* some buffer counters must be capable of holding 64k for Deflate64 */
#if (defined(USE_DEFLATE64) && defined(INT_16BIT))
# define UINT_D64 ulg
#else
# define UINT_D64 unsigned
#endif
#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
# define wsize G._wsize /* wsize is a variable */
#else
# define wsize WSIZE /* wsize is a constant */
#endif
#ifndef NEXTBYTE /* default is to simply get a byte from stdin */
# define NEXTBYTE getchar()
#endif
#ifndef MESSAGE /* only used twice, for fixed strings--NOT general-purpose */
# define MESSAGE(str,len,flag) fprintf(stderr,(char *)(str))
#endif
#ifndef FLUSH /* default is to simply write the buffer to stdout */
# define FLUSH(n) \
(((extent)fwrite(redirSlide, 1, (extent)(n), stdout) == (extent)(n)) ? \
0 : PKDISK)
#endif
/* Warning: the fwrite above might not work on 16-bit compilers, since
0x8000 might be interpreted as -32,768 by the library function. When
support for Deflate64 is enabled, the window size is 64K and the
simple fwrite statement is definitely broken for 16-bit compilers. */
#ifndef Trace
# ifdef DEBUG
# define Trace(x) fprintf x
# else
# define Trace(x)
# endif
#endif
/*---------------------------------------------------------------------------*/
#ifdef USE_ZLIB
/*
GRR: return values for both original inflate() and UZinflate()
0 OK
1 incomplete table(?)
2 bad input
3 not enough memory
*/
/**************************/
/* Function UZinflate() */
/**************************/
int UZinflate(__G__ is_defl64)
__GDEF
int is_defl64;
/* decompress an inflated entry using the zlib routines */
{
int retval = 0; /* return code: 0 = "no error" */
int err=Z_OK;
#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
if (G.redirect_slide)
wsize = G.redirect_size, redirSlide = G.redirect_buffer;
else
wsize = WSIZE, redirSlide = slide;
#endif
G.dstrm.next_out = redirSlide;
G.dstrm.avail_out = wsize;
G.dstrm.next_in = G.inptr;
G.dstrm.avail_in = G.incnt;
if (!G.inflInit) {
unsigned i;
int windowBits;
/* only need to test this stuff once */
if (zlib_version[0] != ZLIB_VERSION[0]) {
Info(slide, 0x21, ((char *)slide,
"error: incompatible zlib version (expected %s, found %s)\n",
ZLIB_VERSION, zlib_version));
return 3;
} else if (strcmp(zlib_version, ZLIB_VERSION) != 0)
Info(slide, 0x21, ((char *)slide,
"warning: different zlib version (expected %s, using %s)\n",
ZLIB_VERSION, zlib_version));
/* windowBits = log2(wsize) */
for (i = (unsigned)wsize, windowBits = 0;
!(i & 1); i >>= 1, ++windowBits);
if ((unsigned)windowBits > (unsigned)15)
windowBits = 15;
else if (windowBits < 8)
windowBits = 8;
G.dstrm.zalloc = (alloc_func)Z_NULL;
G.dstrm.zfree = (free_func)Z_NULL;
Trace((stderr, "initializing inflate()\n"));
err = inflateInit2(&G.dstrm, -windowBits);
if (err == Z_MEM_ERROR)
return 3;
else if (err != Z_OK)
Trace((stderr, "oops! (inflateInit2() err = %d)\n", err));
G.inflInit = 1;
}
#ifdef FUNZIP
while (err != Z_STREAM_END) {
#else /* !FUNZIP */
while (G.csize > 0) {
Trace((stderr, "first loop: G.csize = %ld\n", G.csize));
#endif /* ?FUNZIP */
while (G.dstrm.avail_out > 0) {
err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
if (err == Z_DATA_ERROR) {
retval = 2; goto uzinflate_cleanup_exit;
} else if (err == Z_MEM_ERROR) {
retval = 3; goto uzinflate_cleanup_exit;
} else if (err != Z_OK && err != Z_STREAM_END)
Trace((stderr, "oops! (inflate(first loop) err = %d)\n", err));
#ifdef FUNZIP
if (err == Z_STREAM_END) /* "END-of-entry-condition" ? */
#else /* !FUNZIP */
if (G.csize <= 0L) /* "END-of-entry-condition" ? */
#endif /* ?FUNZIP */
break;
if (G.dstrm.avail_in <= 0) {
if (fillinbuf(__G) == 0) {
/* no "END-condition" yet, but no more data */
retval = 2; goto uzinflate_cleanup_exit;
}
G.dstrm.next_in = G.inptr;
G.dstrm.avail_in = G.incnt;
}
Trace((stderr, " avail_in = %d\n", G.dstrm.avail_in));
}
/* flush slide[] */
if ((retval = FLUSH(wsize - G.dstrm.avail_out)) != 0)
goto uzinflate_cleanup_exit;
Trace((stderr, "inside loop: flushing %ld bytes (ptr diff = %ld)\n",
(long)(wsize - G.dstrm.avail_out),
(long)(G.dstrm.next_out-(Bytef *)redirSlide)));
G.dstrm.next_out = redirSlide;
G.dstrm.avail_out = wsize;
}
/* no more input, so loop until we have all output */
Trace((stderr, "beginning final loop: err = %d\n", err));
while (err != Z_STREAM_END) {
err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
if (err == Z_DATA_ERROR) {
retval = 2; goto uzinflate_cleanup_exit;
} else if (err == Z_MEM_ERROR) {
retval = 3; goto uzinflate_cleanup_exit;
} else if (err == Z_BUF_ERROR) { /* DEBUG */
Trace((stderr,
"zlib inflate() did not detect stream end (%s, %s)\n",
G.zipfn, G.filename));
break;
} else if (err != Z_OK && err != Z_STREAM_END) {
Trace((stderr, "oops! (inflate(final loop) err = %d)\n", err));
DESTROYGLOBALS();
EXIT(PK_MEM3);
}
/* final flush of slide[] */
if ((retval = FLUSH(wsize - G.dstrm.avail_out)) != 0)
goto uzinflate_cleanup_exit;
Trace((stderr, "final loop: flushing %ld bytes (ptr diff = %ld)\n",
(long)(wsize - G.dstrm.avail_out),
(long)(G.dstrm.next_out-(Bytef *)redirSlide)));
G.dstrm.next_out = redirSlide;
G.dstrm.avail_out = wsize;
}
Trace((stderr, "total in = %ld, total out = %ld\n", G.dstrm.total_in,
G.dstrm.total_out));
G.inptr = (uch *)G.dstrm.next_in;
G.incnt = (G.inbuf + INBUFSIZ) - G.inptr; /* reset for other routines */
uzinflate_cleanup_exit:
err = inflateReset(&G.dstrm);
if (err != Z_OK)
Trace((stderr, "oops! (inflateReset() err = %d)\n", err));
return retval;
}
/*---------------------------------------------------------------------------*/
#else /* !USE_ZLIB */
/* Function prototypes */
#ifndef OF
# ifdef __STDC__
# define OF(a) a
# else
# define OF(a) ()
# endif
#endif /* !OF */
int inflate_codes OF((__GPRO__ struct huft *tl, struct huft *td,
int bl, int bd));
static int inflate_stored OF((__GPRO));
static int inflate_fixed OF((__GPRO));
static int inflate_dynamic OF((__GPRO));
static int inflate_block OF((__GPRO__ int *e));
/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
stream to find repeated byte strings. This is implemented here as a
circular buffer. The index is updated simply by incrementing and then
and'ing with 0x7fff (32K-1). */
/* It is left to other modules to supply the 32K area. It is assumed
to be usable as if it were declared "uch slide[32768];" or as just
"uch *slide;" and then malloc'ed in the latter case. The definition
must be in unzip.h, included above. */
/* unsigned wp; moved to globals.h */ /* current position in slide */
/* Tables for deflate from PKZIP's appnote.txt. */
/* - Order of the bit length code lengths */
static ZCONST unsigned border[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
/* - Copy lengths for literal codes 257..285 */
#ifdef USE_DEFLATE64
static ZCONST ush cplens64[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 3, 0, 0};
/* For Deflate64, the code 285 is defined differently. */
#else
# define cplens32 cplens
#endif
static ZCONST ush cplens32[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
/* note: see note #13 above about the 258 in this list. */
/* - Extra bits for literal codes 257..285 */
#ifdef USE_DEFLATE64
static ZCONST uch cplext64[] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 16, INVALID_CODE, INVALID_CODE};
#else
# define cplext32 cplext
#endif
static ZCONST uch cplext32[] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, INVALID_CODE, INVALID_CODE};
/* - Copy offsets for distance codes 0..29 (0..31 for Deflate64) */
static ZCONST ush cpdist[] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
#if (defined(USE_DEFLATE64) || defined(PKZIP_BUG_WORKAROUND))
8193, 12289, 16385, 24577, 32769, 49153};
#else
8193, 12289, 16385, 24577};
#endif
/* - Extra bits for distance codes 0..29 (0..31 for Deflate64) */
#ifdef USE_DEFLATE64
static ZCONST uch cpdext64[] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13, 14, 14};
#else
# define cpdext32 cpdext
#endif
static ZCONST uch cpdext32[] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
#ifdef PKZIP_BUG_WORKAROUND
12, 12, 13, 13, INVALID_CODE, INVALID_CODE};
#else
12, 12, 13, 13};
#endif
#ifdef PKZIP_BUG_WORKAROUND
# define MAXLITLENS 288
#else
# define MAXLITLENS 286
#endif
#if (defined(USE_DEFLATE64) || defined(PKZIP_BUG_WORKAROUND))
# define MAXDISTS 32
#else
# define MAXDISTS 30
#endif
/* moved to consts.h (included in unzip.c), resp. funzip.c */
#if 0
/* And'ing with mask_bits[n] masks the lower n bits */
ZCONST ush near mask_bits[] = {
0x0000,
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
#endif /* 0 */
/* Macros for inflate() bit peeking and grabbing.
The usage is:
NEEDBITS(j)
x = b & mask_bits[j];
DUMPBITS(j)
where NEEDBITS makes sure that b has at least j bits in it, and
DUMPBITS removes the bits from b. The macros use the variable k
for the number of bits in b. Normally, b and k are register
variables for speed and are initialized at the begining of a
routine that uses these macros from a global bit buffer and count.
In order to not ask for more bits than there are in the compressed
stream, the Huffman tables are constructed to only ask for just
enough bits to make up the end-of-block code (value 256). Then no
bytes need to be "returned" to the buffer at the end of the last
block. See the huft_build() routine.
*/
/* These have been moved to globals.h */
#if 0
ulg bb; /* bit buffer */
unsigned bk; /* bits in bit buffer */
#endif
#ifndef CHECK_EOF
# define CHECK_EOF /* default as of 5.13/5.2 */
#endif
#ifndef CHECK_EOF
# define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}}
#else
# define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;\
if(c==EOF){retval=1;goto cleanup_and_exit;}\
b|=((ulg)c)<<k;k+=8;}}
#endif
#define DUMPBITS(n) {b>>=(n);k-=(n);}
/*
Huffman code decoding is performed using a multi-level table lookup.
The fastest way to decode is to simply build a lookup table whose
size is determined by the longest code. However, the time it takes
to build this table can also be a factor if the data being decoded
are not very long. The most common codes are necessarily the
shortest codes, so those codes dominate the decoding time, and hence
the speed. The idea is you can have a shorter table that decodes the
shorter, more probable codes, and then point to subsidiary tables for
the longer codes. The time it costs to decode the longer codes is
then traded against the time it takes to make longer tables.
This results of this trade are in the variables lbits and dbits
below. lbits is the number of bits the first level table for literal/
length codes can decode in one step, and dbits is the same thing for
the distance codes. Subsequent tables are also less than or equal to
those sizes. These values may be adjusted either when all of the
codes are shorter than that, in which case the longest code length in
bits is used, or when the shortest code is *longer* than the requested
table size, in which case the length of the shortest code in bits is
used.
There are two different values for the two tables, since they code a
different number of possibilities each. The literal/length table
codes 286 possible values, or in a flat code, a little over eight
bits. The distance table codes 30 possible values, or a little less
than five bits, flat. The optimum values for speed end up being
about one bit more than those, so lbits is 8+1 and dbits is 5+1.
The optimum values may differ though from machine to machine, and
possibly even between compilers. Your mileage may vary.
*/
static ZCONST int lbits = 9; /* bits in base literal/length lookup table */
static ZCONST int dbits = 6; /* bits in base distance lookup table */
#ifndef ASM_INFLATECODES
int inflate_codes(__G__ tl, td, bl, bd)
__GDEF
struct huft *tl, *td; /* literal/length and distance decoder tables */
int bl, bd; /* number of bits decoded by tl[] and td[] */
/* inflate (decompress) the codes in a deflated (compressed) block.
Return an error code or zero if it all goes ok. */
{
register unsigned e; /* table entry flag/number of extra bits */
unsigned d; /* index for copy */
UINT_D64 n; /* length for copy (deflate64: might be 64k+2) */
UINT_D64 w; /* current window position (deflate64: up to 64k) */
struct huft *t; /* pointer to table entry */
unsigned ml, md; /* masks for bl and bd bits */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
int retval = 0; /* error code returned: initialized to "no error" */
/* make local copies of globals */
b = G.bb; /* initialize bit buffer */
k = G.bk;
w = G.wp; /* initialize window position */
/* inflate the coded data */
ml = mask_bits[bl]; /* precompute masks for speed */
md = mask_bits[bd];
while (1) /* do until end of block */
{
NEEDBITS((unsigned)bl)
t = tl + ((unsigned)b & ml);
while (1) {
DUMPBITS(t->b)
if ((e = t->e) == 32) /* then it's a literal */
{
redirSlide[w++] = (uch)t->v.n;
if (w == wsize)
{
if ((retval = FLUSH(w)) != 0) goto cleanup_and_exit;
w = 0;
}
break;
}
if (e < 31) /* then it's a length */
{
/* get length of block to copy */
NEEDBITS(e)
n = t->v.n + ((unsigned)b & mask_bits[e]);
DUMPBITS(e)
/* decode distance of block to copy */
NEEDBITS((unsigned)bd)
t = td + ((unsigned)b & md);
while (1) {
DUMPBITS(t->b)
if ((e = t->e) < 32)
break;
if (IS_INVALID_CODE(e))
return 1;
e &= 31;
NEEDBITS(e)
t = t->v.t + ((unsigned)b & mask_bits[e]);
}
NEEDBITS(e)
d = (unsigned)w - t->v.n - ((unsigned)b & mask_bits[e]);
DUMPBITS(e)
/* do the copy */
do {
#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
if (G.redirect_slide) {
/* &= w/ wsize unnecessary & wrong if redirect */
if ((UINT_D64)d >= wsize)
return 1; /* invalid compressed data */
e = (unsigned)(wsize - (d > (unsigned)w ? (UINT_D64)d : w));
}
else
#endif
e = (unsigned)(wsize -
((d &= (unsigned)(wsize-1)) > (unsigned)w ?
(UINT_D64)d : w));
if ((UINT_D64)e > n) e = (unsigned)n;
n -= e;
#ifndef NOMEMCPY
if ((unsigned)w - d >= e)
/* (this test assumes unsigned comparison) */
{
memcpy(redirSlide + (unsigned)w, redirSlide + d, e);
w += e;
d += e;
}
else /* do it slowly to avoid memcpy() overlap */
#endif /* !NOMEMCPY */
do {
redirSlide[w++] = redirSlide[d++];
} while (--e);
if (w == wsize)
{
if ((retval = FLUSH(w)) != 0) goto cleanup_and_exit;
w = 0;
}
} while (n);
break;
}
if (e == 31) /* it's the EOB signal */
{
/* sorry for this goto, but we have to exit two loops at once */
goto cleanup_decode;
}
if (IS_INVALID_CODE(e))
return 1;
e &= 31;
NEEDBITS(e)
t = t->v.t + ((unsigned)b & mask_bits[e]);
}
}
cleanup_decode:
/* restore the globals from the locals */
G.wp = (unsigned)w; /* restore global window pointer */
G.bb = b; /* restore global bit buffer */
G.bk = k;
cleanup_and_exit:
/* done */
return retval;
}
#endif /* ASM_INFLATECODES */
static int inflate_stored(__G)
__GDEF
/* "decompress" an inflated type 0 (stored) block. */
{
UINT_D64 w; /* current window position (deflate64: up to 64k!) */
unsigned n; /* number of bytes in block */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
int retval = 0; /* error code returned: initialized to "no error" */
/* make local copies of globals */
Trace((stderr, "\nstored block"));
b = G.bb; /* initialize bit buffer */
k = G.bk;
w = G.wp; /* initialize window position */
/* go to byte boundary */
n = k & 7;
DUMPBITS(n);
/* get the length and its complement */
NEEDBITS(16)
n = ((unsigned)b & 0xffff);
DUMPBITS(16)
NEEDBITS(16)
if (n != (unsigned)((~b) & 0xffff))
return 1; /* error in compressed data */
DUMPBITS(16)
/* read and output the compressed data */
while (n--)
{
NEEDBITS(8)
redirSlide[w++] = (uch)b;
if (w == wsize)
{
if ((retval = FLUSH(w)) != 0) goto cleanup_and_exit;
w = 0;
}
DUMPBITS(8)
}
/* restore the globals from the locals */
G.wp = (unsigned)w; /* restore global window pointer */
G.bb = b; /* restore global bit buffer */
G.bk = k;
cleanup_and_exit:
return retval;
}
/* Globals for literal tables (built once) */
/* Moved to globals.h */
#if 0
struct huft *fixed_tl = (struct huft *)NULL;
struct huft *fixed_td;
int fixed_bl, fixed_bd;
#endif
static int inflate_fixed(__G)
__GDEF
/* decompress an inflated type 1 (fixed Huffman codes) block. We should
either replace this with a custom decoder, or at least precompute the
Huffman tables. */
{
/* if first time, set up tables for fixed blocks */
Trace((stderr, "\nliteral block"));
if (G.fixed_tl == (struct huft *)NULL)
{
int i; /* temporary variable */
unsigned l[288]; /* length list for huft_build */
/* literal table */
for (i = 0; i < 144; i++)
l[i] = 8;
for (; i < 256; i++)
l[i] = 9;
for (; i < 280; i++)
l[i] = 7;
for (; i < 288; i++) /* make a complete, but wrong code set */
l[i] = 8;
G.fixed_bl = 7;
#ifdef USE_DEFLATE64
if ((i = huft_build(__G__ l, 288, 257, G.cplens, G.cplext,
&G.fixed_tl, &G.fixed_bl)) != 0)
#else
if ((i = huft_build(__G__ l, 288, 257, cplens, cplext,
&G.fixed_tl, &G.fixed_bl)) != 0)
#endif
{
G.fixed_tl = (struct huft *)NULL;
return i;
}
/* distance table */
for (i = 0; i < MAXDISTS; i++) /* make an incomplete code set */
l[i] = 5;
G.fixed_bd = 5;
#ifdef USE_DEFLATE64
if ((i = huft_build(__G__ l, MAXDISTS, 0, cpdist, G.cpdext,
&G.fixed_td, &G.fixed_bd)) > 1)
#else
if ((i = huft_build(__G__ l, MAXDISTS, 0, cpdist, cpdext,
&G.fixed_td, &G.fixed_bd)) > 1)
#endif
{
huft_free(G.fixed_tl);
G.fixed_td = G.fixed_tl = (struct huft *)NULL;
return i;
}
}
/* decompress until an end-of-block code */
return inflate_codes(__G__ G.fixed_tl, G.fixed_td,
G.fixed_bl, G.fixed_bd);
}
static int inflate_dynamic(__G)
__GDEF
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
{
int i; /* temporary variables */
unsigned j;
unsigned l; /* last length */
unsigned m; /* mask for bit lengths table */
unsigned n; /* number of lengths to get */
struct huft *tl; /* literal/length code table */
struct huft *td; /* distance code table */
int bl; /* lookup bits for tl */
int bd; /* lookup bits for td */
unsigned nb; /* number of bit length codes */
unsigned nl; /* number of literal/length codes */
unsigned nd; /* number of distance codes */
unsigned ll[MAXLITLENS+MAXDISTS]; /* lit./length and distance code lengths */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
int retval = 0; /* error code returned: initialized to "no error" */
/* make local bit buffer */
Trace((stderr, "\ndynamic block"));
b = G.bb;
k = G.bk;
/* read in table lengths */
NEEDBITS(5)
nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
DUMPBITS(5)
NEEDBITS(5)
nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
DUMPBITS(5)
NEEDBITS(4)
nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
DUMPBITS(4)
if (nl > MAXLITLENS || nd > MAXDISTS)
return 1; /* bad lengths */
/* read in bit-length-code lengths */
for (j = 0; j < nb; j++)
{
NEEDBITS(3)
ll[border[j]] = (unsigned)b & 7;
DUMPBITS(3)
}
for (; j < 19; j++)
ll[border[j]] = 0;
/* build decoding table for trees--single level, 7 bit lookup */
bl = 7;
retval = huft_build(__G__ ll, 19, 19, NULL, NULL, &tl, &bl);
if (bl == 0) /* no bit lengths */
retval = 1;
if (retval)
{
if (retval == 1)
huft_free(tl);
return retval; /* incomplete code set */
}
/* read in literal and distance code lengths */
n = nl + nd;
m = mask_bits[bl];
i = l = 0;
while ((unsigned)i < n)
{
NEEDBITS((unsigned)bl)
j = (td = tl + ((unsigned)b & m))->b;
DUMPBITS(j)
j = td->v.n;
if (j < 16) /* length of code in bits (0..15) */
ll[i++] = l = j; /* save last length in l */
else if (j == 16) /* repeat last length 3 to 6 times */
{
NEEDBITS(2)
j = 3 + ((unsigned)b & 3);
DUMPBITS(2)
if ((unsigned)i + j > n)
return 1;
while (j--)
ll[i++] = l;
}
else if (j == 17) /* 3 to 10 zero length codes */
{
NEEDBITS(3)
j = 3 + ((unsigned)b & 7);
DUMPBITS(3)
if ((unsigned)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
else /* j == 18: 11 to 138 zero length codes */
{
NEEDBITS(7)
j = 11 + ((unsigned)b & 0x7f);
DUMPBITS(7)
if ((unsigned)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
}
/* free decoding table for trees */
huft_free(tl);
/* restore the global bit buffer */
G.bb = b;
G.bk = k;
/* build the decoding tables for literal/length and distance codes */
bl = lbits;
#ifdef USE_DEFLATE64
retval = huft_build(__G__ ll, nl, 257, G.cplens, G.cplext, &tl, &bl);
#else
retval = huft_build(__G__ ll, nl, 257, cplens, cplext, &tl, &bl);
#endif
if (bl == 0) /* no literals or lengths */
retval = 1;
if (retval)
{
if (retval == 1) {
if (!uO.qflag)
MESSAGE((uch *)"(incomplete l-tree) ", 21L, 1);
huft_free(tl);
}
return retval; /* incomplete code set */
}
bd = dbits;
#ifdef USE_DEFLATE64
retval = huft_build(__G__ ll + nl, nd, 0, cpdist, G.cpdext, &td, &bd);
#else
retval = huft_build(__G__ ll + nl, nd, 0, cpdist, cpdext, &td, &bd);
#endif
#ifdef PKZIP_BUG_WORKAROUND
if (retval == 1)
retval = 0;
#endif
if (bd == 0 && nl > 257) /* lengths but no distances */
retval = 1;
if (retval)
{
if (retval == 1) {
if (!uO.qflag)
MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1);
huft_free(td);
}
huft_free(tl);
return retval;
}
/* decompress until an end-of-block code */
retval = inflate_codes(__G__ tl, td, bl, bd);
cleanup_and_exit:
/* free the decoding tables, return */
huft_free(tl);
huft_free(td);
return retval;
}
static int inflate_block(__G__ e)
__GDEF
int *e; /* last block flag */
/* decompress an inflated block */
{
unsigned t; /* block type */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
int retval = 0; /* error code returned: initialized to "no error" */
/* make local bit buffer */
b = G.bb;
k = G.bk;
/* read in last block bit */
NEEDBITS(1)
*e = (int)b & 1;
DUMPBITS(1)
/* read in block type */
NEEDBITS(2)
t = (unsigned)b & 3;
DUMPBITS(2)
/* restore the global bit buffer */
G.bb = b;
G.bk = k;
/* inflate that block type */
if (t == 2)
return inflate_dynamic(__G);
if (t == 0)
return inflate_stored(__G);
if (t == 1)
return inflate_fixed(__G);
/* bad block type */
retval = 2;
cleanup_and_exit:
return retval;
}
int inflate(__G__ is_defl64)
__GDEF
int is_defl64;
/* decompress an inflated entry */
{
int e; /* last block flag */
int r; /* result code */
#ifdef DEBUG
unsigned h = 0; /* maximum struct huft's malloc'ed */
#endif
#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
if (G.redirect_slide)
wsize = G.redirect_size, redirSlide = G.redirect_buffer;
else
wsize = WSIZE, redirSlide = slide; /* how they're #defined if !DLL */
#endif
/* initialize window, bit buffer */
G.wp = 0;
G.bk = 0;
G.bb = 0;
#ifdef USE_DEFLATE64
if (is_defl64) {
G.cplens = cplens64;
G.cplext = cplext64;
G.cpdext = cpdext64;
G.fixed_tl = G.fixed_tl64;
G.fixed_bl = G.fixed_bl64;
G.fixed_td = G.fixed_td64;
G.fixed_bd = G.fixed_bd64;
} else {
G.cplens = cplens32;
G.cplext = cplext32;
G.cpdext = cpdext32;
G.fixed_tl = G.fixed_tl32;
G.fixed_bl = G.fixed_bl32;
G.fixed_td = G.fixed_td32;
G.fixed_bd = G.fixed_bd32;
}
#else /* !USE_DEFLATE64 */
if (is_defl64) {
/* This should not happen unless UnZip is built from object files
* compiled with inconsistent option setting. Handle this by
* returning with "bad input" error code.
*/
Trace((stderr, "\nThis inflate() cannot handle Deflate64!\n"));
return 2;
}
#endif /* ?USE_DEFLATE64 */
/* decompress until the last block */
do {
#ifdef DEBUG
G.hufts = 0;
#endif
if ((r = inflate_block(__G__ &e)) != 0)
return r;
#ifdef DEBUG
if (G.hufts > h)
h = G.hufts;
#endif
} while (!e);
Trace((stderr, "\n%u bytes in Huffman tables (%u/entry)\n",
h * (unsigned)sizeof(struct huft), (unsigned)sizeof(struct huft)));
#ifdef USE_DEFLATE64
if (is_defl64) {
G.fixed_tl64 = G.fixed_tl;
G.fixed_bl64 = G.fixed_bl;
G.fixed_td64 = G.fixed_td;
G.fixed_bd64 = G.fixed_bd;
} else {
G.fixed_tl32 = G.fixed_tl;
G.fixed_bl32 = G.fixed_bl;
G.fixed_td32 = G.fixed_td;
G.fixed_bd32 = G.fixed_bd;
}
#endif
/* flush out redirSlide and return (success, unless final FLUSH failed) */
return (FLUSH(G.wp));
}
int inflate_free(__G)
__GDEF
{
if (G.fixed_tl != (struct huft *)NULL)
{
huft_free(G.fixed_td);
huft_free(G.fixed_tl);
G.fixed_td = G.fixed_tl = (struct huft *)NULL;
}
return 0;
}
#endif /* ?USE_ZLIB */
/*
* GRR: moved huft_build() and huft_free() down here; used by explode()
* and fUnZip regardless of whether USE_ZLIB defined or not
*/
/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
#define BMAX 16 /* maximum bit length of any code (16 for explode) */
#define N_MAX 288 /* maximum number of codes in any set */
int huft_build(__G__ b, n, s, d, e, t, m)
__GDEF
ZCONST unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
unsigned n; /* number of codes (assumed <= N_MAX) */
unsigned s; /* number of simple-valued codes (0..s-1) */
ZCONST ush *d; /* list of base values for non-simple codes */
ZCONST uch *e; /* list of extra bits for non-simple codes */
struct huft **t; /* result: starting table */
int *m; /* maximum lookup bits, returns actual */
/* Given a list of code lengths and a maximum table size, make a set of
tables to decode that set of codes. Return zero on success, one if
the given code set is incomplete (the tables are still built in this
case), two if the input is invalid (all zero length codes or an
oversubscribed set of lengths), and three if not enough memory.
The code with value 256 is special, and the tables are constructed
so that no bits beyond that code are fetched when that code is
decoded. */
{
unsigned a; /* counter for codes of length k */
unsigned c[BMAX+1]; /* bit length count table */
unsigned el; /* length of EOB code (value 256) */
unsigned f; /* i repeats in table every f entries */
int g; /* maximum code length */
int h; /* table level */
register unsigned i; /* counter, current code */
register unsigned j; /* counter */
register int k; /* number of bits in current code */
int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */
int *l = lx+1; /* stack of bits per table */
register unsigned *p; /* pointer into c[], b[], or v[] */
register struct huft *q; /* points to current table */
struct huft r; /* table entry for structure assignment */
struct huft *u[BMAX]; /* table stack */
unsigned v[N_MAX]; /* values in order of bit length */
register int w; /* bits before this table == (l * h) */
unsigned x[BMAX+1]; /* bit offsets, then code stack */
unsigned *xp; /* pointer into x */
int y; /* number of dummy codes added */
unsigned z; /* number of entries in current table */
/* Generate counts for each bit length */
el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
memzero((char *)c, sizeof(c));
p = (unsigned *)b; i = n;
do {
c[*p]++; p++; /* assume all entries <= BMAX */
} while (--i);
if (c[0] == n) /* null input--all zero length codes */
{
*t = (struct huft *)NULL;
*m = 0;
return 0;
}
/* Find minimum and maximum length, bound *m by those */
for (j = 1; j <= BMAX; j++)
if (c[j])
break;
k = j; /* minimum code length */
if ((unsigned)*m < j)
*m = j;
for (i = BMAX; i; i--)
if (c[i])
break;
g = i; /* maximum code length */
if ((unsigned)*m > i)
*m = i;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= c[j]) < 0)
return 2; /* bad input: more codes than bits */
if ((y -= c[i]) < 0)
return 2;
c[i] += y;
/* Generate starting offsets into the value table for each length */
x[1] = j = 0;
p = c + 1; xp = x + 2;
while (--i) { /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
memzero((char *)v, sizeof(v));
p = (unsigned *)b; i = 0;
do {
if ((j = *p++) != 0)
v[x[j]++] = i;
} while (++i < n);
n = x[g]; /* set n to length of v */
/* Generate the Huffman codes and for each, make the table entries */
x[0] = i = 0; /* first Huffman code is zero */
p = v; /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = l[-1] = 0; /* no bits decoded yet */
u[0] = (struct huft *)NULL; /* just to keep compilers happy */
q = (struct huft *)NULL; /* ditto */
z = 0; /* ditto */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++)
{
a = c[k];
while (a--)
{
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > w + l[h])
{
w += l[h++]; /* add bits already decoded */
/* compute minimum size table less than or equal to *m bits */
z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
{ /* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = c + k;
while (++j < z) /* try smaller tables up to z bits */
{
if ((f <<= 1) <= *++xp)
break; /* enough codes to use up j bits */
f -= *xp; /* else deduct codes from patterns */
}
}
if ((unsigned)w + j > el && (unsigned)w < el)
j = el - w; /* make EOB code end at table */
z = 1 << j; /* table entries for j-bit table */
l[h] = j; /* set table size in stack */
/* allocate and link in new table */
if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
(struct huft *)NULL)
{
if (h)
huft_free(u[0]);
return 3; /* not enough memory */
}
#ifdef DEBUG
G.hufts += z + 1; /* track memory usage */
#endif
*t = q + 1; /* link to list for huft_free() */
*(t = &(q->v.t)) = (struct huft *)NULL;
u[h] = ++q; /* table starts after link */
/* connect to last table, if there is one */
if (h)
{
x[h] = i; /* save pattern for backing up */
r.b = (uch)l[h-1]; /* bits to dump before this table */
r.e = (uch)(32 + j); /* bits in this table */
r.v.t = q; /* pointer to this table */
j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
u[h-1][j] = r; /* connect to last table */
}
}
/* set up table entry in r */
r.b = (uch)(k - w);
if (p >= v + n)
r.e = INVALID_CODE; /* out of values--invalid code */
else if (*p < s)
{
r.e = (uch)(*p < 256 ? 32 : 31); /* 256 is end-of-block code */
r.v.n = (ush)*p++; /* simple code is just the value */
}
else
{
r.e = e[*p - s]; /* non-simple--look up in lists */
r.v.n = d[*p++ - s];
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != x[h])
w -= l[--h]; /* don't need to update q */
}
}
/* return actual size of base table */
*m = l[0];
/* Return true (1) if we were given an incomplete table */
return y != 0 && g != 1;
}
int huft_free(t)
struct huft *t; /* table to free */
/* Free the malloc'ed tables built by huft_build(), which makes a linked
list of the tables it made, with the links in a dummy first entry of
each table. */
{
register struct huft *p, *q;
/* Go through linked list, freeing from the malloced (t[-1]) address. */
p = t;
while (p != (struct huft *)NULL)
{
q = (--p)->v.t;
free((zvoid *)p);
p = q;
}
return 0;
}