
Programming with Haiku

Lesson 2

Written by DarkWyrm

All material © 2010 DarkWyrm

In our first lesson, we learned about how to generalize type handling using templates and
some of the incredibly flexible data containers in Standard Template Library. The list, deque,
and vector containers are good at storing data for sequential access, but there is more to the
STL than merely these three. We will study the other major containers and the differences and
similarities among them. There will also be some coverage of a portable string class which
makes string manipulation much easier than with the standard C functions. There is a lot of
information in this lesson. Go slowly and don't be afraid to re-read it once or twice, if
necessary.

C++ Strings

Before we tackle these other containers, it is necessary to know about the Standard C++
library, which uses concepts from the STL but provides other useful development tools. One
of these is a general purpose string class.

Working with strings using the standard C functions such as strcpy() and strstr() is a lot
of hassle. The wonderful BString class in the Support Kit eliminates this hassle, but so does
the C++ string class. Most of the time you will find the BString class preferable because it
is generally faster, can do far more, and is integrated into the Haiku API, but there are a few
methods which the C++ strings have for which BString has no equivalent.

string substr(size_t pos = 0, size_t n = npos);

substr() returns a substring starting with the character at pos and ending at n. npos is a
static value which equals the greatest size the string could be. Needless to say, it's silly to call
this and use both of the default values because this just returns the entire string.

size_t find_first_not_of (const string &str, size_t pos = 0) const;
size_t find_first_not_of (const char *s, size_t pos, size_t n) const;
size_t find_first_not_of (const char *s, size_t pos = 0) const;
size_t find_first_not_of (char c, size_t pos = 0) const;
size_t find_last_not_of (const string& str, size_t pos = npos) const;
size_t find_last_not_of (const char* s, size_t pos, size_t n) const;
size_t find_last_not_of (const char* s, size_t pos = npos) const;
size_t find_last_not_of (char c, size_t pos = npos) const;

These two functions search the string object for the first (or last) occurrence of a character
that is not one of the ones specified in the first parameter of the call. Here is an example of
how it can be used.

std::string myString = "/boot/home/config/settings";
size_t pos = myString.find_first_not_of('/');

In this example, the char version of find_first_not_of() is used to find the first character
which is not a slash. pos in this example has a value of 1. Used in series, this could be a way
to break up a file path into a series of folder names without resorting to using strtok().

C++ strings are also in the std namespace and may be referred to as std::string to
differentiate them from regular C-style strings. They are used with the header <string>. We
won't be using C++ strings very much, but it's best to know about their existence because
they are used fairly often on other platforms.

Associative Containers

The associative containers provided to us by the Standard Template Library are necessary
when it is slow or impossible to use integers to look up data in a container. While it is
possible to manually search arrays, vectors, or other sequential containers using a loop, it is
potentially slow to do so. For an occasional lookup, this is just fine, but if you have to
repeatedly look up information this way, this can impose a serious performance hit in your
code.

map

Header: <map>

The map container centers around what is known as a key-value pair, i.e. a lookup value and
the data that goes with it. Declaring a map object involves the types for both the key and
value, like this:

map<BString, int32> myMap;

This declaration creates a map which uses strings to look up integers. It is common to see
maps being used to look up data using strings as keys. By using std::string or BString as
the key type, it is possible to use a regular C-style string to get the value.

printf("The value for %s is %d\n", "Some value", myMap["Some value"]);

The only caveat to using a map is that the key values are expected to be unique. The items in
the map are actually another STL container: pair. The pair container merely associates two
types together. Accessing the two types paired together is done via the properties first and
second.

set

The set container is a similar to a map except that the values are also the keys and they are
sorted. Like map, all items in a set are expected to be unique.. It is not often used because
there are other containers which are more flexible. The main purpose for using a set is
guaranteed fast insertions and fast lookups. The implementation of the set container is
normally pretty complicated so it can provide these guarantees.

multimap, multiset

These are versions of set and map which do not require the keys to be unique. Calling the
find() method still returns only one item with the key given to it, but these containers have
an additional method, equal_range() which returns two iterators to a range that provides all
of the elements with the specified key value.

Container Adapters

In addition to the containers provided by the Standard Template Library, there are a few
container adapters. These use a regular STL container to do the heavy lifting for a specialized
interface.

queue

A queue adapter normally sits on top of a deque container. Conceptually, items go in the
back of the queue and come out the front, much like getting into the ticket line at the movies.
This is sometimes called FIFO, or first-in, first-out processing. It provides the methods
front(), back(), push_back(), and pop_front().

priority_queue

The priority_queue adapter works a lot like the queue adapter with one significant
difference: the first item out is not the first item in. Instead, the first item out is the one with
the highest priority. The two containers that can be used as the backend – to do all of the
heavy lifting – are the vector, which is the default, and the deque.

stack

The stack can sit on top of a deque, vector, or list. It is used for LIFO processing, as in
last-in, first-out. It can be likened to a stack of trays in a cafeteria: the last tray placed on the
stack is also the first one to be taken off.

Common STL Container Methods

There are a lot of different containers provided by the STL, and sometimes it's hard to
remember which is which. Thankfully, there is a common set of methods for all of them.

iterator begin();
const_iterator begin() const;

Returns an iterator which refers to the first element in the container. Because the
associative containers sort their elements in ascending order, begin() will return
the item with the lowest value.

iterator end();
const_iterator end() const;

Returns an iterator which refers to an element which is past the end of the
elements in the container – this is not the same as the last element. This method is
most often used in loops, particularly for loops.

iterator rbegin();
const_iterator rbegin() const;
iterator rend();
const_iterator rend() const;

These methods do the same job as begin() and end() but starting at the end of
the container and working toward the beginning. rbegin() returns the last
element of the container and rend() returns an iterator which is before the first
element. These methods correspond with using a reverse_iterator in a loop
instead of a regular one.

size_type size() const;

This is the number of objects the container holds.

size_type max_size() const;

max_size() returns the maximum number of objects that the container can hold
based on limitations imposed by the system.

bool empty() const;

Returns true if the container has zero elements.

void resize(size_type newSize, T from = T());

The container is resized to hold newSize elements. If this is fewer than the
current number, then the excess elements are dropped. If the new size is greater,
then new elements are created from the object passed as the parameter from. If
none is specified, the default constructor for the container object's type is used.
This method is available only to sequential containers like vector.

reference front();
const reference front() const;
reference back();
const reference back() const;

These methods return the first or last element of the container, respectively. This
is not the same as the iterator returned by begin() or rbegin(). These methods
are not available to associative containers like map.

vector, deque

reference operator[size_type index];
const_reference operator[size_type index] const;

map

T & operator[const key_type &key];

Using the array operator on a deque, vector, or map returns the item with the
specified index. In the case of map, this is the value at the specified key. If a map
does not have a value at the specified key, it is created with an empty value. This
operator is available for only these three containers.

reference at(size_type index);
const_reference at(size_type index) const;

at() works just like the array operator with two key differences: it's only
available to the deque and vector containers and if an index is used that is out of
the container's bounds, at() throws an out_of_bounds exception.

template class<InputIterator>
void assign(InputIterator first, InputIterator last);
void assign(size_type newSize, const T &from);

assign is a wonderful way to set items in a sequential container to a value all at
once or to copy one container into another. The first version takes iterators from

another container and copies those elements into the owning container starting
with first through, but not including, last. The second version sets all elements
to the value specified by from. In both cases, the container is resized to newSize
or the number of elements specified by the range in the iterator version.

iterator insert(iterator pos, const T &item);
template <class InputIterator>
void insert(iterator pos, InputIterator first, InputIterator last);

vector, deque, and list only

void insert(iterator pos, size_type count, const T &item);

map and set only

pair<iterator, bool> insert(const value_type &item);

multimap and multiset only

iterator insert (const value_type &item);

insert() adds another item to a container. This method is common to all STL
containers, although each container has an additional form of the call unique to
itself. The speed of an item insertion depends on the implementation of the
container. For example, adding an item in the middle of a vector is potentially
slow, but adding an item to its end is quite fast.

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

set, multiset, map, and multimap only

size_type erase(const key_type &lookupValue);

erase() deletes an item from a container. Like insert(), performance of this
call depends on the implementation of the container.

swap(<container to swap with>);

This call takes another container of the same type and swaps the items between
the two containers. All pointers, references, and other outside data related to the
items kept in the two containers remain valid.

void clear();

In one fell swoop, this call deletes all items in the container, making it completely
empty.

void push_front(const T &item);
void pop_front();

These two calls enable you to add or remove an item from the front of a deque or
list. pop_front() not only removes the item from the container, it also deletes
the item, too.

void push_back(const T &item);
void pop_back();

These two calls perform the same operations as the front versions, but they
operate on the items at the back. However, these calls are available for the
vector container, as well as deque and list.

key_compare key_comp() const;

This returns the object used to compare items in the container. It can either be a
pointer to a function or an instance of a class which implements the function call
operator. The comparison function tests two objects of the container's type and
returns true if the first item is to be less than or to be placed before the second
item in the container or false in any other case. This function is only available to
associative containers.

value_compare val_comp() const;

This works just like key_comp() except that it returns the function used to
compare two values. For the set container, this is the same as key_comp(). This
function is only available to associative containers.

iterator find(const key_type &lookupValue) const;

Searches the container for the element which matches lookupValue and returns
an iterator which points to it or end() if not found. This function is only available
to associative containers.

size_type count(const key_type &lookupValue) const;

Returns the number of elements in the container which match the lookup value.
Although this method is available to all associative containers, it only makes
sense to use it on multiset and multimap, because map and set require their
lookup values to be unique.

iterator lower_bound(const key_type &lookupValue);
const iterator lower_bound(const key_type &lookupValue) const;
iterator upper_bound(const key_type &lookupValue) const;
pair<iterator, iterator> equal_range(const key_type &lookupValue) const;

lower_bound() returns an iterator which points to the first item which is greater
than or equal to the lookup value. upper_bound() returns an iterator to the first
item which is greater than the lookup value. equal_range() returns two iterators,
the first of which is the same as lower_bound(lookupValue) and the second is
the same as upper_bound(lookupValue). Like count(), these methods are
available to all associative containers, but they only make sense to use with
multiset and multimap.

STL and the Standard Library: So What?

Having taken a whirlwind tour through a lot of different template classes after only a short
introduction to namespaces and templates, this might all be a little overwhelming. Not to
worry. These don't have to be used as often as you might think. Haiku has a class internal to
Tracker called BObjectList which provides all of the ease-of-use of the BList class with the
optional ability to have it handle memory management. This covers the need for indexed
storage. The map and multimap containers do really well for random access containers. The
remaining containers are more for reference in specialized instances, cross-platform
programming, and recognizing them in others' code. They also are necessary when nesting a
container within another, such as a map of vectors.

The same can be said for the Standard C++ library. Some of it will come in handy for Haiku
development, and some of it won't be immediately useful. Their usefulness partly depends on
how much development you do on other platforms, such as Linux or Windows. If you plan on
programming just for Haiku, you probably won't use much of the standard library or the STL,
but if you also develop for other platforms, using these will ease the transitions made between
platforms.

	C++ Strings
	Associative Containers
	map
	set
	multimap, multiset

	Container Adapters
	queue
	priority_queue
	stack

	Common STL Container Methods
	vector, deque
	map
	vector, deque, and list only
	map and set only
	multimap and multiset only
	set, multiset, map, and multimap only

	STL and the Standard Library: So What?

